
Nikolaj Bjørner
Sanjiva Prasad
Laxmi Parida (Eds.)

 123

LN
CS

 9
58

1

12th International Conference, ICDCIT 2016
Bhubaneswar, India, January 15–18, 2016
Proceedings

Distributed Computing
and Internet Technology

Lecture Notes in Computer Science 9581

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

prashant.anantharaman.gr@dartmouth.edu

More information about this series at http://www.springer.com/series/7409

prashant.anantharaman.gr@dartmouth.edu

http://www.springer.com/series/7409

Nikolaj Bjørner • Sanjiva Prasad
Laxmi Parida (Eds.)

Distributed Computing
and Internet Technology
12th International Conference, ICDCIT 2016
Bhubaneswar, India, January 15–18, 2016
Proceedings

123

prashant.anantharaman.gr@dartmouth.edu

Editors
Nikolaj Bjørner
Microsoft Research
Redmond, WA
USA

Sanjiva Prasad
Indian Institute of Technology Delhi
New Delhi
India

Laxmi Parida
IBM Thomas J. Watson Research Center
Yorktown Heights, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-28033-2 ISBN 978-3-319-28034-9 (eBook)
DOI 10.1007/978-3-319-28034-9

Library of Congress Control Number: 2015957781

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

prashant.anantharaman.gr@dartmouth.edu

Preface

The 12th International Conference on Distributed Computing and Internet Technology,
ICDCIT-2016, took place in Bhubaneswar, India, during January 15–18, 2016. It was
hosted and sponsored by the Kalinga Institute of Information Technology (KIIT)
University.

The ICDCIT conference series focusses on three broad areas of computer science,
namely, distributed computing, Internet technologies, and societal applications. It
provides a platform for academicians, researchers, practitioners, and developers to
present and publish their research findings and also deliberate on contemporary topics
in the area of distributed computing and Internet technology. From the very inception
of the ICDCIT series the conference proceedings have been published by Springer as
Lecture Notes in Computer Science; vol. 3347 (year 2004), 3816 (2005), 4317 (2006),
4882 (2007), 5375 (2008), 5966 (2010), 6536 (2011), 7154 (2012), 7753 (2013), 8337
(2014), 8956 (2015), and 9581 (2016).

In response to the call for submissions, ICDCIT 2016 received 165 abstracts.
Subsequently, 129 submissions with full versions were reviewed by an international
Program Committee (PC) consisting of 35 members from 12 countries. Each sub-
mission was peer reviewed by up to three PC members with the help of external
reviewers. After receiving the reviews of the papers, the PC meeting was conducted
electronically over a period of ten days in the latter part of September 2015 to discuss
and finalize the acceptance of submissions under different categories. We included a
poster paper category in order to encourage participation and presentation of ongoing
research activities. Based on their relevance to the conference theme, and the quality
of the technical contents and presentation style, a total of 24 papers (19%) were
accepted for presentation and publication in the LNCS proceedings, out of which six
papers (5%) are under the category of regular papers each with a maximum length of
12 pages, seven short papers, and 11 poster papers. We wish to thank all the PC
members and external reviewers for their hard work, dedication, and timely submission
of the reviews without which it would have been difficult to maintain the publication
schedule.

The program also included invited lectures by six distinguished speakers: Benny
Chor (Tel Aviv University, Israel), Eric Jonasch (University of Texas, USA), Shriram
Krishnamurthi (Brown University, USA), John Rushby (SRI International, USA),
Assaf Schuster (Technion, Israel), and Andrei Voronkov (University of Manchester,
UK). We express our sincere thanks to all the invited speakers for accepting our
invitation to share their expertise and also submit insightful and thought-provoking
papers for inclusion in the proceedings. We are very sad to report that one of our
original invited speakers, Alberto Apostolico, passed away while he was attending a
conference in Lipari, Italy. He is missed dearly by all his friends, colleagues, and
co-authors, and he was in our thoughts during this meeting.

prashant.anantharaman.gr@dartmouth.edu

Our sincere thanks to Achyuta Samanta (Founder of KIIT University) for his
patronage and constant support with hosting the ICDCIT conference series. We are
grateful to the Vice-Chancellor and administration of the KIIT University for providing
us with the infrastructure and logistics to organize this international event. We are
indebted to the Advisory Committee members for their constant guidance and support.
We would like to place on record our appreciation of the invaluable service and tireless
efforts of the organizing chair, finance chair, publicity chair, registration chair, session
management chair, the publications chair, and all members of various committees. We
would also like to thank the chairs of the satellite events, the student symposium, and
the industry symposium. We would like to thank Arup Acharya in particular, for his
help on communicating all matters related to registration and submissions. Our special
thanks to Hrushikesha Mohanty, N. Raja, and D.N. Dwivedy for their valuable advice
and wholehearted involvement in all activities.

We wish to acknowledge and thank all the authors for their scholarly contributions
to the conference, which stimulated interesting discussions during the technical ses-
sions. Our thanks are also due to the technical session chairs for managing the sessions
effectively. We acknowledge the service rendered by EasyChair for efficient and
smooth handling of all activities starting from paper submissions to preparation of the
proceedings. We sincerely thank Alfred Hofmann and Anna Kramer from Springer for
their cooperation and constant support throughout the publication process of this LNCS
volume.

Last but not the least, we thank all the participants and people who directly or
indirectly contributed to making ICDCIT 2016 a memorable event.

January 2016 Nikolaj Bjørner
Sanjiva Prasad
Laxmi Parida

VI Preface

prashant.anantharaman.gr@dartmouth.edu

Organization

Program Committee

Karthikeyan Bhargavan Inria, France
Chiranjib Bhattacharyyaa Indian Institute of Science, India
Nikolaj Bjørner Microsoft Research, USA
Hung Dang Van UET, Vietnam National University, Hanoi
Günter Fahrnberger University of Hagen, North Rhine-Westphalia,

Germany
Marc Frincu University of Southern California, USA
Vijay Ganesh University of Waterloo, Canada
Deepak Garg Max Planck Institute for Software Systems, Germany
Arie Gurfinkel Software Engineering Institute, Carnegie Mellon

University, USA
Karthick Jayaraman Microsoft, USA
Ranjit Jhala University of California San Diego, USA
Kishore Kothapalli IIIT, Hyderabad, India
Laura Kovacs Chalmers University of Technology, Sweden
Paddy Krishnan Oracle, Australia
Ratul Mahajan Microsoft Research, USA
Hrushikesha Mohanty University of Hyderabad, India
Krishnendu

Mukhopadhyaya
Indian Statistical Institute, India

Madanlal Musuvathi Microsoft Research, USA
Laxmi Parida IBM, USA
Manas Ranjan Patra Berhampur University, India
Dana Petcu West University of Timisoara, Romania
Tatjana Petrov IST Austria
Ruzica Piskac Yale University, USA
Sanjiva Prasad IIT Delhi, India
P. Radha Krishna SET Labs, Infosys Technologies Limited, Hyderabad,

India
N. Raja TIFR, India
S. Ramaswamy ABB Inc., India
Krishna S. IIT Bombay, India
Smruti Sarangi IIT Delhi, India
Nishant Sinha IBM Research Labs, India
Jun Sun Singapore University of Technology and Design
Hideyuki Takahashi Tohoku University, Japan
Mahesh Tripunitara University of Waterloo, Canada
Yakir Vizel Princeton University, USA

prashant.anantharaman.gr@dartmouth.edu

Additional Reviewers

Akshay, S.
Babiceanu, Radu
Bai, Guangdong
Berezish, Murphy
Bégay, Pierre-Léo
Dang Duc, Hanh
De, Swades
Gauthier, Francois
Gorain, Barun
Hollitt, Christopher
Kalra, Prem
Li, Li
Liang, Jimmy
Malakar, Preeti

Mandal, Partha Sarathi
Mukhopadhyaya, Srabani
Narasimhan, Lakshmi
Negi, Atul
Nejati, Saeed
Paul, Kolin
Rathinasamy,

Bhavanandan
Santolucito, Mark
Sau, Buddhadeb
Sen, Sagnik
Subramanian,

Vimalathithan
Subramanyan, Pramod

Sudarsan, Sithu
Sur-Kolay, Susmita
Tran, Thi Minh Chau
Truong, Hoang
Utro, Filippo
Veerubhotla, Ravi Sankar
Zhai, Ennan
Zhang, Shuyuan
Zhu, Charlie Shucheng
Zulkoski, Ed

VIII Organization

prashant.anantharaman.gr@dartmouth.edu

Invited Talks

prashant.anantharaman.gr@dartmouth.edu

Teaching Computer Science in the Community

Benny Chor1(&) and Assaf Zaritsky1,2(&)

1 School of Computer Science Tel Aviv University Tel Aviv 69978, Israel
benny@cs.tau.ac.il, assafzar@gmail.com

2 Present Address: Department of Cell Biology,
UT Southwestern Medical Center,

Dallas, TX 75390, USA

Abstract. The School of Computer Science at Tel Aviv University, Israel, has
initiated and carried out a project titled “Teaching Computer Science in the
Community”. The project aims to introduce scientific thinking and basic com-
puter science concepts in an informal setting to school children from low
socio-economic background. The project is implemented as a single semester
undergraduate elective course, in which third year computer science students
teach in schools and community centers. Here, we describe the spirit, content,
and structure of the course and discuss insight we have gained over the last four
years of teaching it.

prashant.anantharaman.gr@dartmouth.edu

Attacks in the Resource-as-a-Service (RaaS)
Cloud Context

Danielle Movsowitz, Orna Agmon Ben-Yehuda, and Assaf Schuster(&)

Technion—Haifa Institute of Technology,
Haifa, Israel

dani.movso@campus.technion.ac.il,

{ladypine, assaf}@cs.technion.ac.il,

http://www.cs.technion.ac.il

Abstract. The Infrastructure-as-a-Service (IaaS) cloud is evolving towards the
Resource-as-a-Service (RaaS) cloud: a cloud which requires economic decisions
to be taken in real time by automatic agents. Does the economic angle introduce
new vulnerabilities? Can old vulnerabilities be exploited on RaaS clouds from
different angles? How should RaaS clouds be designed to protect them from
attacks? In this survey we analyze relevant literature in view of RaaS cloud
mechanisms and propose directions for the design of RaaS clouds.

prashant.anantharaman.gr@dartmouth.edu

Static and Dynamic Reasoning for SDNs

Tim Nelson and Shriram Krishnamurthi

Brown University

In a traditional network, switches collectively decide on forwarding behavior. In
contrast, a Software-Defined Network [5] (SDN) obeys a logically centralized con-
troller program. Centralization and programmability grant unparalleled visibility and
control, but also pose challenges to reasoning about network behavior. This talk pre-
sents some recent work [10, 11, 12, 13, 14] in both static and dynamic reasoning for
SDNs and lays out a landscape for thinking about these issues.

Correct-by-Construction Switch Updates SDNs have prompted a surge in network
programming-languages research [1, 9, 11, 15] aimed at helping operators more easily
write safe, trustworthy controllers. For performance reasons, controller programs often
install persistent behavior on switches. In effect, this means that these programs must
themselves generate programs. Manually managing this process opens the programmer
to numerous subtle bugs: controllers can be flooded with unnecessary traffic or fall
behind on important updates, leading to still more incorrect behavior. Fortunately, this
issue can be mitigated by language runtimes that manage switch updates automatically.

Static Reasoning: Verification Even if switch behavior is correct with respect to the
program, the program itself may have bugs—many of which can be detected with static
program reasoning (e.g., [2, 4, 7, 8]). Reasoning about network programs may be either
in context of the network they control or in isolation. For instance, we might check that
the program preserves reachability in a particular network, but we might also want to
confirm that the program properly implements round-robin load-balancing—a property
that depends only on the behavior of switches, independent from network topology.

Static Reasoning: Differential Analysis Humans are notoriously poor at stating for-
mal properties, especially without training. Moreover, many correctness properties shift
in subtle ways as a program evolves over time. In the absence of properties, it is useful
to recall that property verification is only one means to an end: building confidence in
the program being checked. Often, an operator may have an initial program that
“works”, and wishes to transfer their confidence in the old version onto the new
version. They may have only an intuitive notion of what the change should (and should
not) accomplish; we discuss techniques that leverage this intuition by presenting
examples of differential behavior.

Dynamic Reasoning Dynamic, rather than static, reasoning (e.g., [3, 6, 14, 16]) is also
powerful in certain cases, such as testing the use of third-party libraries or validating
hardware behavior. Interactive dynamic tools let operators iteratively refine their

prashant.anantharaman.gr@dartmouth.edu

understanding and locate faults step by step. The downside of interactivity is that it can
become repetitive, and thus we believe that dynamic tools should also be scriptable.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., Walker, D.:
NetKAT: semantic foundations for networks. In: Principles of Programming Languages
(POPL) (2014)

2. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira, M.,
Valadarsky, A.: VeriCon: towards verifying controller programs in software-defined net-
works. In: Programming Language Design and Implementation (PLDI) (2014)

3. Beckett, R., Zou, X.K., Zhang, S., Malik, S., Rexford, J., Walker, D.: An assertion language
for debugging SDN applications. In: Workshop on Hot Topics in Software Defined Net-
working (2014)

4. Canini, M., Venzano, D., Perešíni, P., Kostić, D., Rexford, J.: A NICE way to test OpenFlow
applications. In: Networked Systems Design and Implementation (2012)

5. Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an intellectual history of pro-
grammable networks. ACM Comput. Commun. Rev. 44(2) (2014)

6. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., McKeown, N.: I know what your
packet did last hop: using packet histories to troubleshoot networks. In: Networked Systems
Design and Implementation (2014)

7. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking for
networks. In: Networked Systems Design and Implementation (2012)

8. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: verifying
network-wide invariants in real time. In: Networked Systems Design and Implementation
(2013)

9. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software-defined
networks. In: Networked Systems Design and Implementation (2013)

10. Nelson, T., Ferguson, A.D., Krishnamurthi, S.: Static differential program analysis for
software-defined networks. In: International Symposium on Formal Methods (FM) (2015)

11. Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless programming and
reasoning for software-defined networks. In: Networked Systems Design and Implementa-
tion (2014)

12. Nelson, T., Ferguson, A.D., Yu, D., Fonseca, R., Krishnamurthi, S.: Exodus: toward auto-
matic migration of enterprise network configurations to sdns. In: Symposium on SDN
Research (SOSR) (2015)

13. Nelson, T., Guha, A., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: A balance of power:
expressive, analyzable controller programming. In: Workshop on Hot Topics in Software
Defined Networking (2013)

14. Nelson, T., Yu, D., Li, Y., Fonseca, R., Krishnamurthi, S.: Simon: scriptable interactive
monitoring for sdns. In: Symposium on SDN Research (SOSR) (2015)

15. Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P.: Maple: simplifying SDN pro-
gramming using algorithmic policies. In: Conference on Communications Architectures,
Protocols and Applications (SIGCOMM) (2013)

16. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.: OFRewind: enabling record and
replay troubleshooting for networks. In: USENIX Annual Technical Conference (2011)

XIV Static and Dynamic Reasoning for SDNs

prashant.anantharaman.gr@dartmouth.edu

Trustworthy Self-Integrating Systems

John Rushby(&)

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA
rushby@csl.sri.com

Abstract. Patients in intensive care often have a dozen or more medical devices
and sensors attached to them. Each is a self-contained system that operates in
ignorance of the others, and their integrated operation as a system of systems
that delivers coherent therapy is performed by doctors and nurses. But we can
easily imagine a scenario where the devices recognize each other and
self-integrate (perhaps under the guidance of a master “therapy app”) into a
unified system. Similar scenarios can be (and are) envisaged for vehicles and
roads, and for the devices and services in a home. These self-integrating systems
have the potential for significant harm as well as benefit, so as they integrate
they should adapt and configure themselves appropriately and should construct
an “assurance case” for the utility and safety of the resulting system. Thus,
trustworthy self-integration requires autonomous adaptation, synthesis, and
verification at integration time, and this means that embedded automated
deduction (i.e., theorem provers) will be the engine of integration.

prashant.anantharaman.gr@dartmouth.edu

The Design of EasyChair (Abstract)

Andrei Voronkov

University of Manchester, Chalmers University of Technology, EasyChair

EasyChair started in 2002 as a small collection of scripts helping the author to organise
submission and reviewing for the conferences LPAR and CADE. Since then it has
served over 41,000 conferences and 1,500,000 users. The system has over 297,000
lines of source code (mainly in Perl) and automates paper submission, reviewing,
proceedings generation, publishing, conference registration and conference programme
generation. Several new modules are under development.

The design and architecture of every very large Web service is unique, and
EasyChair is not an exception. This talk overviews design features of EasyChair, which
may be interesting for the software engineering community.

Highly agile development methodology. EasyChair development is highly user-
oriented. There are essentially no major releases. Even very large modules, such as
program generation, are initially released in a minimal form, and then extended,
updated and bug-fixed depending on its acceptance by users, user feedback and dis-
covered bugs. For example, the initial version of program generation contained about
8,000 lines of source code, now contains about 32,000 lines and will probably reach
over 50,000 lines in the next year. There are frequent updates, normally performed
without stopping the server. In the last calendar year there were nearly 1,400 updates,
that is, about 4 updates per day.

Design centred around a small number of concepts. EasyChair is uniformly designed.
All pages, apart from home pages, have the same logic and structure and contain the
same components. There are several programming techniques that are consistently used
and supported by libraries.

Semantic page generation. EasyChair design is not based on writing pages as text, as
PHP suggests. The page content is an object consisting of components, which are also
objects. A typical statement in the program is “add this paragraph to the page sum-
mary” or “add this link to the page context menu”.

The visual design of pages follows the logic of the design. We are preparing a new
design for mobile devises and expect no changes in the code for concrete pages, since
visual design is totally separated from page generation.

Automatic generation of efficient and secure code. Nearly all libraries in EasyChair
(which constitute about 40% of all code) are generated automatically from SQL table
descriptions. This code automates access to tables, object-relational mapping and
caching of objects. This eliminates any possibility of SQL injection and guarantees that
a large part of the code is correct and efficient.

prashant.anantharaman.gr@dartmouth.edu

The fact that the page content (and HTML in general) is an object essentially
eliminates a possibility of JavaScript injection.

An object caching technique eliminating mismatch between objects and relational data.
Data handled by EasyChair is very complex, thanks to the logic of the application and a
variety of conference management models it suports. When a user accesses a page, it
may easily result in access to 20 to 60 different relational tables.

Database access in EasyChair uses no joins and is still efficient, thanks to the use of
object-relational mapping and object caching technique. Before this technique was
implemented, EasyChair had frequent deadlocks (with a much smaller number of
users). Maintaining code on database schema changes was a time-consuming and
error-prone work. With the new technique we estimate that a ten-fold increase of the
number of users will make no effect on the EasyChair performance.

Server-side generation of client-side code. Although EasyChair uses JavaScript
extensively, programming dynamic pages or AJAX calls in EasyChair normally
requires no knowledge of JavaScript - the JavaScript code is generated by server-side
libraries.

Automation of code management. More than 10% of EasyChair code is metacode,
dedicated to supporting EasyChair programming, maintaining and analyzing code and
making updates. EasyChair has its own code maintenance and versioning implemen-
tation used in addition to Git.

Light-weight code analysis. EasyChair contains several modules for code analysis,
trying to find common problems (simple examples are the use of uninterpolated
variables in strings, or database access outside of library modules) and also generating
information for programmers (e.g., sophisticated cross-link analysis).

We also plan an implementation of light-weight dataflow analysis intended to find
potential information leaks.

Automatic generation of documentation. In addition to user-provided Doxygen docu-
mentation, EasyChair generates Doxygen documentation automatically from the SQL
code. It also generates documentation about how pages are accesses from other pages,
including access parameters and the type of their values.

Integrity constraint management. In EasyChair one can specify nearly arbitrary
integrity constraints on objects, including their relations to other objects (for example,
“a submission should have at least one corresponding author” or “a submission on a PC
member watch list cannot be on her or his conflict list”). The code for enforcing these
constraints is generated automatically. Any updates violating integrity constraints will
be rejected. This powerful technique uncovered a number of subtle problems in the
EasyChair code. Now adding any new class to EasyChair is necessarily followed by
specification of integrity constraints.

The Design of EasyChair (Abstract) XVII

prashant.anantharaman.gr@dartmouth.edu

Runtime analysis. EasyChair code execution is analysed at runtime, including statistics
on database queries, script use and timing to ensure efficiency, understanding of how it
is used, and security.

Nearly 50% of EasyChair code is now generated automatically. The high level of
code management automation of EasyChair has allowed the author to increase the code
size by around 50,000 lines in the last 16 months and also make the code less
error-prone and easier to maintain and understand.

XVIII The Design of EasyChair (Abstract)

prashant.anantharaman.gr@dartmouth.edu

Contents

Invited Talks

Teaching Computer Science in the Community . 3
Benny Chor and Assaf Zaritsky

Attacks in the Resource-as-a-Service (RaaS) Cloud Context 10
Danielle Movsowitz, Orna Agmon Ben-Yehuda, and Assaf Schuster

Trustworthy Self-Integrating Systems. 19
John Rushby

Contributed Papers

HiRE - A Heuristic Approach for User Generated Record Extraction. 33
S. Chandrakanth and P. Santhi Thilagam

Optimization of Service Rate in a Discrete-Time Impatient Customer Queue
Using Particle Swarm Optimization . 38

Pikkala Vijaya Laxmi and Kanithi Jyothsna

A Wait-Free Stack. 43
Seep Goel, Pooja Aggarwal, and Smruti R. Sarangi

Influential Degree Heuristic for RankedReplace Algorithm in Social
Networks . 56

Jatharakonda Mallesham and S. Durga Bhavani

An Efficient Task Consolidation Algorithm for Cloud Computing Systems . . . 61
Sanjaya K. Panda and Prasanta K. Jana

Storage Load Control Through Meta-Scheduler Using Predictive Analytics . . . 75
Kumar Dheenadayalan, V.N. Muralidhara,
and Gopalakrishnan Srinivasaraghavan

A Distributed Approach Based on Maximal Far-Flung Scalar Premier
Selection for Camera Actuation. 87

Sushree Bibhuprada B. Priyadarshini and Suvasini Panigrahi

An Extension to UDDI for the Discovery of User Driven Web Services 92
Anu Saini

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1007/978-3-319-28034-9_1
http://dx.doi.org/10.1007/978-3-319-28034-9_2
http://dx.doi.org/10.1007/978-3-319-28034-9_3
http://dx.doi.org/10.1007/978-3-319-28034-9_4
http://dx.doi.org/10.1007/978-3-319-28034-9_5
http://dx.doi.org/10.1007/978-3-319-28034-9_5
http://dx.doi.org/10.1007/978-3-319-28034-9_6
http://dx.doi.org/10.1007/978-3-319-28034-9_7
http://dx.doi.org/10.1007/978-3-319-28034-9_7
http://dx.doi.org/10.1007/978-3-319-28034-9_8
http://dx.doi.org/10.1007/978-3-319-28034-9_9
http://dx.doi.org/10.1007/978-3-319-28034-9_10
http://dx.doi.org/10.1007/978-3-319-28034-9_10
http://dx.doi.org/10.1007/978-3-319-28034-9_11

Long Wire Length of Midimew-Connected Mesh Network. 97
M.M. Hafizur Rahman, Rizal Mohd Nor, Md. Rabiul Awal,
Tengku Mohd Bin Tengku Sembok, and Yasuyuki Miura

K-means and Wordnet Based Feature Selection Combined with Extreme
Learning Machines for Text Classification . 103

Rajendra Kumar Roul and Sanjay Kumar Sahay

Language Identification and Disambiguation in Indian Mixed-Script 113
Bhumika Gupta, Gaurav Bhatt, and Ankush Mittal

A Dynamic Priority Based Scheduling Scheme for Multimedia Streaming
Over MANETs to Improve QoS . 122

Syed Jalal Ahmad, V.S.K. Reddy, A. Damodaram, and P. Radha Krishna

Improved Bug Localization Technique Using Hybrid Information Retrieval
Model . 127

Alpa Gore, Siddharth Dutt Choubey, and Kopal Gangrade

HGASA: An Efficient Hybrid Technique for Optimizing Data Access in
Dynamic Data Grid . 132

R. Kingsy Grace and R. Manimegalai

Energy Efficient SNR Based Clustering in Underwater Sensor Network
with Data Encryption. 137

Sahu Bandita and Khilar Pabitra Mohan

Collaborative Access Control Mechanism for Online Social Networks 142
Nemi Chandra Rathore, Prashant Shaw, and Somanath Tripathy

i-TSS: An Image Encryption Algorithm Based on Transposition, Shuffling
and Substitution Using Randomly Generated Bitmap Image 148

Kanagaraj Narayanasamy and Padmapriya Arumugam

A Type System for Counting Logs of Multi-threaded Nested Transactional
Programs . 157

Anh-Hoang Truong, Dang Van Hung, Duc-Hanh Dang,
and Xuan-Tung Vu

Proactive Resource Provisioning Model for Cloud Federation 169
Geethapriya Ramakrishnan, Prashant Anantharaman,
and Saswati Mukherjee

A Multiclass SVM Classification Approach for Intrusion Detection 175
Santosh Kumar Sahu and Sanjay Kumar Jena

Dynamic Data Replication Across Geo-Distributed Cloud Data Centres 182
D.S. Jayalakshmi, T.P. Rashmi Ranjana, and Srinivasan Ramaswamy

XX Contents

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1007/978-3-319-28034-9_12
http://dx.doi.org/10.1007/978-3-319-28034-9_13
http://dx.doi.org/10.1007/978-3-319-28034-9_13
http://dx.doi.org/10.1007/978-3-319-28034-9_14
http://dx.doi.org/10.1007/978-3-319-28034-9_15
http://dx.doi.org/10.1007/978-3-319-28034-9_15
http://dx.doi.org/10.1007/978-3-319-28034-9_16
http://dx.doi.org/10.1007/978-3-319-28034-9_16
http://dx.doi.org/10.1007/978-3-319-28034-9_17
http://dx.doi.org/10.1007/978-3-319-28034-9_17
http://dx.doi.org/10.1007/978-3-319-28034-9_18
http://dx.doi.org/10.1007/978-3-319-28034-9_18
http://dx.doi.org/10.1007/978-3-319-28034-9_19
http://dx.doi.org/10.1007/978-3-319-28034-9_20
http://dx.doi.org/10.1007/978-3-319-28034-9_20
http://dx.doi.org/10.1007/978-3-319-28034-9_21
http://dx.doi.org/10.1007/978-3-319-28034-9_21
http://dx.doi.org/10.1007/978-3-319-28034-9_22
http://dx.doi.org/10.1007/978-3-319-28034-9_23
http://dx.doi.org/10.1007/978-3-319-28034-9_24

Trust Based Target Coverage Protocol for Wireless Sensor Networks Using
Fuzzy Logic . 188

Pooja Chaturvedi and A.K. Daniel

An Internet of Things Based Software Framework to Handle Medical
Emergencies . 193

K.G. Srinivasa, Kartik S. Gayatri, Maaz Syed Adeeb,
and Nikhil N. Jannu

Minimal Start Time Heuristics for Scheduling Workflows in Heterogeneous
Computing Systems. 199

D. Sirisha and G. VijayaKumari

FC-LID: File Classifier Based Linear Indexing for Deduplication in Cloud
Backup Services . 213

P. Neelaveni and M. Vijayalakshmi

Author Index . 223

Contents XXI

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1007/978-3-319-28034-9_25
http://dx.doi.org/10.1007/978-3-319-28034-9_25
http://dx.doi.org/10.1007/978-3-319-28034-9_26
http://dx.doi.org/10.1007/978-3-319-28034-9_26
http://dx.doi.org/10.1007/978-3-319-28034-9_27
http://dx.doi.org/10.1007/978-3-319-28034-9_27
http://dx.doi.org/10.1007/978-3-319-28034-9_28
http://dx.doi.org/10.1007/978-3-319-28034-9_28

Invited Talks

prashant.anantharaman.gr@dartmouth.edu

Teaching Computer Science in the Community

Benny Chor1(B) and Assaf Zaritsky1,2(B)

1 School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
benny@cs.tau.ac.il, assafzar@gmail.com

2 Department of Cell Biology, UT Southwestern Medical Center,
Dallas, TX 75390, USA

Abstract. The School of Computer Science at Tel Aviv University,
Israel, has initiated and carried out a project titled “Teaching Com-
puter Science in the Community”. The project aims to introduce scien-
tific thinking and basic computer science concepts in an informal setting
to school children from low socio-economic background. The project is
implemented as a single semester undergraduate elective course, in which
third year computer science students teach in schools and community
centers. Here, we describe the spirit, content, and structure of the course
and discuss insight we have gained over the last four years of teaching it.

1 Background

Teaching Computer Science in the Community is an elective course offered in
2008–2014 by the school of Computer Science (CS) at Tel Aviv University (TAU)
as part of the regular undergraduate CS curriculum. The course combines aca-
demic content and social involvement, with the basic underlying theme of intro-
ducing scientific thinking and CS concepts in an informal setting to school chil-
dren. The course engages three layers of participants:

1. School children (250 in 2014).
2. Undergraduate CS students (33 in 2014), acting as instructors to these school

children.
3. Course staff (3 in 2014), responsible for the course academic contents, peda-

gogical aspects, and administration.

Most school children participating in the project are 10 to 14 years old, and
come from low socio-economic neighborhoods in the Tel Aviv metropolitan area.
The ultimate goals of the project are to attract the children to sciences and
technology, CS in particular, to increase their accessibility to higher education.
Most parents of the participating children did not have the opportunity to obtain
higher education. Thus, an implicit goal is to present this option, by having the
undergraduate students become role models for the children. A secondary goal is
to empower the students-instructors, who must deal with challenging and often
unexpected educational situations, and to broaden their social awareness.

In this paper, we describe the content and administration of the course based
on our experience in the last four years, starting from 2011, when we became in
charge of the course.
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 3–9, 2016.
DOI: 10.1007/978-3-319-28034-9 1

prashant.anantharaman.gr@dartmouth.edu

4 B. Chor and A. Zaritsky

2 Activities Content

Initially, during 2011 and 2012, the activities carried out in schools and commu-
nity centers were mostly taken from Computer Science Unplugged (see below),
and consequently were “computer free”. During these two years, we witnessed a
strong demand by the school children to include some hands-on activities, where
they can “touch the keyboards”. Consequently, we incorporated introductory
programming classes in the curriculum. In addition, as of 2014, every group of
school children visited the offices of a high-tech company and was introduced to
its activities. In the following sections, we elaborate on these three components.

2.1 Computer Science Unplugged

Much of the teaching material is taken from the program Computer Science
Unplugged (CSU), developed by Tim Bell, Ian Witten and Michael Fellows [1]
(http://csunplugged.org/activities/). CSU teaches concepts of scientific think-
ing and problem solving, especially in computer science, through games and
activities that do not require computers. Activities include topics such as the
binary number system and how it is used to represent text and images, error
correction codes, digital images representation and processing, information the-
ory, cryptography, graphs and graph algorithms. Many activities were translated
to Hebrew by Benny Chor and Shimon Schocken (http://www.csunplugged.org.
il/), and some original activities were added as well. The informal nature and
flexibility of this program, as well as the ability to adjust the expositions and
activities to varying ages, makes it suitable for our purposes.

One of the popular activities, the Card Flip Magic, is briefly described here
(see http://csunplugged.org/error-detection/#Card Flip Magic). The activity
starts with a discussion about transmission of digital messages (text, audio,
or video) between computers, cell phones, and other electronic devices. In par-
ticular, how messages are received intact, despite noise and errors that may be
introduced when the message moves through the communication path. This dis-
cussion is followed by a concrete game, employing 25 large cards, each with a
black side and a white side. The game proceeds as follows:

1. A volunteer is selected and asked to place the cards in a 5-by-5 square pattern
on a board, choosing arbitrarily if the white or black side of each card will
face the audience.

2. The student-instructor leaves the classroom for a short while, saying that
during this time a second volunteer will flip one of the cards, and that upon
returning to class, the student-instructor will guess which card was flipped.
The instructor explains that the 5-by-5 pattern is large enough so that a guess
cannot be carried out successfully by memorizing the initial arrangement.

3. Before leaving the classroom, the student-instructor announces that he/she
will make this task even harder by adding a row and a column of cards to
the 5-by-5 pattern, making it a 6-by-6 pattern, noting that this surely makes
the guessing task even harder. The student-instructor adds that the second
volunteer is allowed to flip any of the 36 cards in the resulting 6-by-6 pattern.

prashant.anantharaman.gr@dartmouth.edu

http://csunplugged.org/activities/
http://www.csunplugged.org.il/
http://www.csunplugged.org.il/
http://csunplugged.org/error-detection/#Card_Flip_Magic

Teaching Computer Science in the Community 5

4. The student-instructor leaves the classroom, the door is shut, and the second
volunteer flips one card.

5. The student-instructor returns to the classroom and “miraculously” succeeds
in guessing the flipped card.

The key to this successful educated guess are the cards in the additional row
and column: they define parity bits for error detection and correction, whereas
the original 25 cards constitute the message, or information bits. The additional
cards are placed so that the number of black-sided cards in each row and column
is even (parity bits), allowing detection and correction of a single bit error, and
detection (without correction) in the case of two or three bit errors. There are
configurations of four bit errors that cannot be detected, and these are later
demonstrated to the class.

A couple of additional rounds of this game are performed, and the children
discuss how the student-instructor correctly guessed the flipped card. Next, the
student-instructor explains the “trick”, and this is followed by hands-on activity
by the children using smaller size versions of the cards. Finally, the class discusses
error detection and correction in a more general setting, including examples from
day-to-day life, such as barcodes, ID and credit card numbers.

2.2 Preparing New Activities

In addition to using existing activity outlines, students-instructors design and
prepare new activities. This constitutes their major academic task in the
course. Examples of such activities include search engines, artificial intelli-
gence, the Turing test, representing audio using numbers (and bits), online
privacy, and computer game design. These new activities are added to an
activity pool that is accessible to other students and is available online
(http://www.csunplugged.org.il, in Hebrew) under the Creative Commons
Attribution-ShareAlike 3.0 United States license (CC BY-SA 3.0 US).

2.3 Introductory Programming

Feedback from school children and their instructors suggested that children are
interested in learning programming and that it was difficult for them to concen-
trate on theoretical aspects for the entire course. Responding to this feedback,
we added hands-on activities using Scratch , a widely used first programming
language for children (https://scratch.mit.edu), to complement the theoretical
CSU activities. Scratch’s interface fully supports a variety of languages, includ-
ing Hebrew, which is very helpful for children. Various resources were used by
the students-instructors to teach Scratch. The main resources were detailed pre-
sentations, prepared by former students of the course, a textbook written at the
Weizmann Institute of Science [2], and numerous projects that are featured on
the Scratch web site (https://scratch.mit.edu).

prashant.anantharaman.gr@dartmouth.edu

http://www.csunplugged.org.il
https://scratch.mit.edu
https://scratch.mit.edu

6 B. Chor and A. Zaritsky

2.4 Visits to High-Tech Companies

Israel has a thriving information technology (IT) and start-up industry. Intro-
ducing the children to computer science in the real world has two benefits: raising
interest and enthusiasm about CS, and inspiring long term career goals. We held
a successful pilot during the 3rd year of our project (2013), which served as
a model, and became a regular part of the program in the 4th year (2014).
Every group of children visited an IT company. These visits were guided by
company employees, most of whom were alumni of the Computer Science in
the Community course. Typically, one of the class activities before the visit was
devoted to an explanation of concepts related to high-tech industry in general,
and start-up companies in particular. Remarkably, this addition to the project
was initiated and arranged (completely voluntarily) by a former student in the
course, highlighting the long-term commitment of students to the project (see
http://kidstartupday.wix.com/kidstartupday).

3 Graduation Ceremony

Soon after the end of the semester, we hold a graduation event at the university.
The school children are invited, together with their families and representatives
from the schools and community centers. University officials (head of CS school,
head of the unit for social intervention, dean of the faculty of Exact Sciences,
and the deputy rector) are also invited. The event begins with a guided tour of
the campus. Each group of school children is led by the same team of students
that instructed them during the semester. The ceremony that follows includes
greetings by TAU and CS School officials, and a popular science guest lecture.
The children are then awarded graduation certificates signed by representatives
of the School of Computer Science and the Unit of Community Involvement at
TAU. These certificates are greatly valued by the children and their families.
Approximately 250 guests attended the event that concluded the 2014 activity.

Following the graduation event, we hold an informal concluding session for
the course stuff and the students-instructors. In this session, we encourage crit-
icism and suggestions regarding the course activities and operations. This feed-
back is valuable for maintaining the course standards and further improving this
project. The relationships between the course staff and students are informal and
open throughout the semester, and a sentiment of true partnership is formed.

This has led to sincere, constructive feedback that substantially helped
improving the project over the years. For example, in the first year we ran this
project, we required an extensive review process of each new activity by other
students. Following students’ criticism that this process was slow, tedious, and
not very effective, we modified the review process. The students complained that
this process was slow and caused too much overhead. Consequently, we modified
the review process. The students also commented that some of the texts we used
as examples were written in an old fashion linguistic style, not accessible to most
children. These texts were consequently simplified substantially.

prashant.anantharaman.gr@dartmouth.edu

http://kidstartupday.wix.com/kidstartupday

Teaching Computer Science in the Community 7

4 Course Administration

Many administrative decisions and details should be taken care of while planning
and executing this course. Below, we briefly list a number of important ones.

– Collaborations and Funding
• Recruiting a course staff member from TAU unit for social intervention,

and administrative support from the School of CS.
• Securing funding to the project via university and external resources.
• Collaborations with several non-profit organizations that provide direct link

to schools and community centers.
– Interaction with the schools and community centers

• Selection and coordination of schools and community centers. The major
criteria are genuine interest in the project and the availability of appropriate
facilities (e.g., having functioning computers).

• Reaching an understanding on mutual commitments with schools/commu-
nity centers. For example, notifying the students-instructors in advance if a
planned meeting is cancelled due to school activity, or help with discipline
problems by having a teacher present in class during activities.

• Setting up a network of contacts people (typically teachers or deputy school
principals) in each school/community center.

• Contacting schools/community centers in cases of persistent problems such
as continued misbehavior of the children.

– Interaction between course staff and students
• Recruiting students: This includes advertising the course by sending intro-

ductory emails, inviting 2nd and 3rd year CS students who are interested
to participate in the project for group meetings with the academic staff.
These meetings provide a framework to disseminate detailed information
to the students, and an opportunity to assess the abilities and potential of
every candidate.

• Assigning students to teams – in most cases two students per team, and
very few singleton teams.

• Assigning students’ teams to schools and community centers, based on stu-
dents’ scheduling constraints, teaching experience and potential.

• Intensive, brief teaching training for students (4 meetings, 3 h each, during
the first 2 weeks of the semester). We note that this is the only formal
teaching training CS students get as part of their university studies.

• Setting a mechanism to track progress of every team of students in each
center by filling online reports on a weekly basis.

• Supplying timely pedagogical advice and assistance to students in cases
of difficulties in the classrooms, as well as advice regarding the teaching
materials.

• A mid-semester meeting with the students for sharing experiences, dis-
cussing difficulties, resolving problems, and raising awareness to the fact
that despite frequent friction points and occasional frustration, the pro-
gram is highly appreciated by the school children and the school teachers.

prashant.anantharaman.gr@dartmouth.edu

8 B. Chor and A. Zaritsky

• Fostering sincere and open communication between the course staff and the
students-instructors.

• Recording new and improved activities in the course website for use by
future students and other interested parties.

• Collecting students’ feedback and acting to improve the following round of
the course accordingly.

• Defining a grading policy, based on a combination of students’ activities
during the training, feedback from schools and community centers, and the
quality, originality, and readability of the academic task.

These administrative aspects are crucial to the successful operation of such
projects, and are as important to its success as the academic contents. We
decided not to elaborate more on these aspects in this manuscript, as many
of them will vary in different contexts and locations. Detailed descriptions of
these aspects are available (in Hebrew) [3]. The activities developed by the
students-instructors are available only in Hebrew. However, the central educa-
tional components on which our program is based, Computer Science Unplugged
and Scratch, are readily accessible. Interested educators are encouraged to con-
tact the authors of this paper, BC and AZ, for further details.

5 Concluding Remarks

We did not have the resources and means to conduct a rigorous evaluation of
the project using accepted statistical and educational tools. Yet, we did formu-
late and distribute feedback forms annually, and collected them from partici-
pating children and students-instructors. Many students reflected that partici-
pation in the course was an important challenge and an enriching experience.
Some described it as the most meaningful course throughout their undergradu-
ate Computer Science studies. A number of school children commented that this
project exposed them to science and technology and encouraged them to reg-
ister to elective computer and science courses (in their schools). Some children
expressed interest in future academic studies.

Projects of a similar spirit were adopted in Israel by the Ashkelon Academic
College and by the University of Haifa. In both cases, our course staff provided
guidance, advice and teaching material.

The main long term goal of this project is making science, particularly com-
puter science, accessible to children from low socio-economical backgrounds.
Despite the lack of rigorous statistical evidence, we hope and believe that this
project will achieve its goals and serve as a model bridging students, academia,
science, technology and education.

Funding. This project was supported by the School of Computer Science,
Tel-Aviv University, by Google project CS@HS, and by the Council of Higher
Education in Israel.

Acknowledgements. We are proud to thank many friends, colleagues, and students,
for help and support during the development and operation of this project.

prashant.anantharaman.gr@dartmouth.edu

Teaching Computer Science in the Community 9

Benny Chor wishes to thank Tim Bell and Mike Fellows, initiators of the Computer
Science Unplugged project, for their friendship, support, and many hours of discussions
and debates. Many thanks to Shimon Schocken from the Inter Disciplenary Center in
Hertzeliya for co-translating CSU material to Hebrew, and running together a similar,
initial project during the years 2009 and 2010.

We would like to thank Rachel Warshavsky, Idit Helman, and Nadia Belkind from
the Unit of Community Involvement at the Dean of Students Office, Tel-Aviv Uni-
versity, for the fruitful partnership, which substantially improved the quality of our
project. Special thanks to Yasmin Denenberg from the Unit of Community Involve-
ment, who was an essential part of the course staff during the three years 2012 to 2014,
and provided indispensable knowledge and experience on the pedagogical aspects of
this operation. Thanks to Pnina Neria-Barzilay from the School of Computer Science at
Tel Aviv University, who helped solving numerous administrative and logistical prob-
lems that occurred during our activities, and to the School of Computer Science at Tel
Aviv University, whose support made this project possible.

Thanks to Matan Hadadi, our former student, for his KidStartUpDay initiative.
Thanks to the many former course students who participated in our intensive training
for newer students, shared their experience, and hosted school children groups in visits
to high tech companies, where they are employed. Yoav Ram, Noy Rotbart, Amir
Rubinstein, Arieh Zaritsky, and Hilla Zaritsky provided helpful comments on earlier
drafts of this manuscript. Thanks to Noga Levy-Oron and David Amar, who were
the teaching assistants in 2013–2014. Last but not least, we thank the 110+ TAU CS
students who took on this challenge (during the years 2011 to 2014) and carried it out
remarkably.

References

1. Bell, T.C., Witten, I.H., Fellows, M.: Computer Science Unplugged ... Off-line activ-
ities and games for all ages (1998). http://csunplugged.org/wp-content/uploads/
2015/01/unplugged-book-v1.pdf

2. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science con-
cepts with Scratch. Comput. Sci. Educ. 23, 239–264 (2013)

3. Zaritsky, A., Chor, B.: Teaching Computer Science in the Community at Tel Aviv
University, Hebetim in Computer Science (in Hebrew), pp. 5–13 (2014)

prashant.anantharaman.gr@dartmouth.edu

http://csunplugged.org/wp-content/uploads/2015/01/unplugged-book-v1.pdf
http://csunplugged.org/wp-content/uploads/2015/01/unplugged-book-v1.pdf

Attacks in the Resource-as-a-Service (RaaS)
Cloud Context

Danielle Movsowitz, Orna Agmon Ben-Yehuda, and Assaf Schuster(B)

Technion—Israel Institute of Technology, Haifa, Israel
dani.movso@campus.technion.ac.il, {ladypine,assaf}@cs.technion.ac.il

http://www.cs.technion.ac.il

Abstract. The Infrastructure-as-a-Service (IaaS) cloud is evolving
towards the Resource-as-a-Service (RaaS) cloud: a cloud which requires
economic decisions to be taken in real time by automatic agents. Does
the economic angle introduce new vulnerabilities? Can old vulnerabili-
ties be exploited on RaaS clouds from different angles? How should RaaS
clouds be designed to protect them from attacks? In this survey we ana-
lyze relevant literature in view of RaaS cloud mechanisms and propose
directions for the design of RaaS clouds.

Keywords: Cloud computing · Privacy · Security · RaaS

1 Introduction

The Resource-as-a-Service (RaaS) cloud [1] is an economic model of cloud com-
puting that allows providers to sell individual resources (such as CPU, memory,
and I/O resources) for a few seconds at a time. In the RaaS cloud, clients are
able to purchase exactly the resources they need when they need them. In light of
global trends and economic incentives driving the providers to a price war [3], we
anticipate that the RaaS cloud will gradually replace the IaaS cloud. In the RaaS
cloud, e-commerce is quick and frequent. It is impossible for a human to make
the economic decisions required to optimize the resource purchases. Hence, in
the RaaS cloud, clients will deploy automatic agents to conduct the e-commerce
for them. This e-commerce may be centralized (an auction, for example) or
decentralized (as in a marketplace or negotiations).

Commercial cloud users are selfish economic entities, with secrets and poten-
tially conflicting preferences. Since some clients may be malicious, most clients
expect a certain level of privacy and security within the system. The more private
and secure the cloud is, the more motivated the users are to trust the cloud with
important tasks. In the past few years, numerous studies have been published
on different attack methods (side channel, escape to hypervisor, etc.), levels of
isolation in cloud computing systems, and how to detect and limit attacks.

The introduction of economic aspects into the hypervisor, the basic layer
of the cloud’s operating system, may introduce new vulnerabilities. In addition,
known attacks may be launched in different ways against an economically driven
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 10–18, 2016.
DOI: 10.1007/978-3-319-28034-9 2

prashant.anantharaman.gr@dartmouth.edu

Attacks in the RaaS Context 11

machine, or may be combined in different ways with economic attacks. In this
paper we survey non-economic attacks in the context of the RaaS cloud, in order
to learn how a successful, undetected attack may be launched, and what can be
done to defend against it.

We begin this paper with a description of Ginseng, an example of an economic
resource allocation mechanism in the hypervisor, in Sect. 2. In Sect. 3 we survey
cloud attacks which may prove relevant in the context of the RaaS cloud. We
conclude in Sect. 4.

2 Allocating RAM Using an Auction

The division of resources according to economic mechanisms is discussed in
several academic works [4,15,16,18,26] and implemented in several commercial
clouds. Amazon’s spot instances are sold using an auction, in which entire IaaS
machines are rented. In CloudSigma’s burst price method, clients pay a fast-
changing price.1 Both pricing mechanisms are declared to be affected by supply
and demand, but their exact algorithm is kept secret [2]. In this work we use
the terminology and mechanism used by Ginseng [4], the first economy-driven
cloud system that allocates memory efficiently to selfish cloud clients. It does so
by using the Memory Progressive Second Price (MPSP) auction, which is based
on the Progressive Second Price (PSP) auction [16].

In a RaaS cloud, each guest has a different, changing, private (secret) valu-
ation for memory: how much benefit it expects to gain from different quantities
of memory. This is what guides the agent’s actions in any economic transac-
tion it performs (i.e., negotiations or auction bidding). We define the aggregate
benefit of a memory allocation to all guests—their satisfaction from auction
results—using the game-theoretic measure of social welfare. The social welfare
of an allocation is defined as the sum of all the guests’ valuations of the memory
they receive in this allocation. An efficient memory auction allocates the memory
to the guests such that the social welfare is maximized.

VCG [6,13,25] auctions optimize social welfare by incentivizing even selfish
participants with conflicting economic interests to inform the auctioneer of their
true valuation of the auctioned items. They do so by the exclusion compensa-
tion principle, which means that each participant is charged for the damage it
inflicts on other participants’ social welfare, rather than directly for the items it
wins. VCG auctions are used in various settings, including Facebook’s repeated
auctions [14,17].

The Memory Progressive Second Price (MPSP) auction, which Ginseng uses,
resembles a VCG auction. It is a repeated auction in which each auction round
takes 12 s. In each auction round the participants bid in order to rent memory
for the following 12 s. The MPSP protocol is illustrated in Fig. 1. To work at this
rate, the participants are not human clients who own the guest virtual machines,
but rather software agents which work on their behalf, according to the valuation
1 CloudSigma’s Pricing https://www.cloudsigma.com/pricing/, accessed October

2015.

prashant.anantharaman.gr@dartmouth.edu

https://www.cloudsigma.com/pricing/

12 D. Movsowitz et al.

Fig. 1. Ginseng’s MPSP protocol.

functions and business-logic algorithms embedded in them by their respective
owners. Accordingly, the auction is orchestrated by the host’s auctioneer, which
is a software agent working on behalf of the cloud provider. Ginseng’s structure
in illustrated in Fig. 2.

An MPSP auction round begins with the host’s auctioneer announcing the
quantity of memory which is up for rent in this round. Then, during the following
3 s, each participant may bid by stating a maximal unit price it is willing to pay
for the memory (in terms of dollars per MB per second), and desired ranges of
quantities it is willing to accept. The limitation of ranges allows the guest to
refuse to get and pay for quantities from which it cannot benefit: for example, if
the guest requires 1 GB to avoid thrashing, and can enjoy up to 1.5 GB, it can
refuse to get any memory quantity in the range 0–1 GB, but be willing to rent
any quantity from 1–1.5 GB.

During the fourth second, the host’s auctioneer determines the allocation and
the bills each guest will have to pay. The host’s auctioneer chooses the allocation
which optimizes the social welfare according to the bids. The bills are computed
according to the exclusion compensation principle: each guest pays according to
the damage it causes other guests, as per their own reported valuation. For each
guest i, the host’s auctioneer computes the social welfare of all guests except

prashant.anantharaman.gr@dartmouth.edu

Attacks in the RaaS Context 13

Fig. 2. Ginseng’s structure. The auctioneer is a smart agent working for the host.
It interacts with the strategic agent within the guest. Once the auction’s results are
determined, the host actually changes the resource allocation for the guest. The guest
uses the resource to operate its applications (presumably one or more main applications,
whose performance matters).

guest i. Then it computes what the optimal allocation would be, had guest i not
participated in the auction at all, and what the social welfare of all the other
guests would be in that case. Guest i’s bill is determined as the difference between
these two computations. This method of computing payments and choosing an
optimal allocation makes truthful bidding the best strategy for the guests: to
state the real value they attach to getting a certain quantity of RAM.

Then the host announces the result of the auction to the guests, and gives
them 8 s to prepare for a change in the memory allocation (e.g., release memory
from the main application), before the change actually takes place. Finally, at the
end of the 12 s, the host actually changes the memory allocation (if necessary).

When the host announces the results, each guest hears in private how much
memory it won, and for what price. In addition, the host informs all guests of
the lowest bid price among those whose bidders won any memory (denoted by
Pmin in), and the highest bid price among those whose bidders did not win any
memory (denoted by Pmax out). This information is broadcast for three reasons.
First, the guest agents use this information to plan their next bids: they use it
to approximate the borderline unit price bid, below which they are not likely
to win any memory in the next round. Second, guest agents can acquire this
information over time through the rejection or acceptance of their bids, so it
is futile to try to hide it. Third, helping the guest agents learn the borderline
unit price bid quickly can help the system stabilize, and thus reach the maximal
social welfare quickly.

Although we refer in this work to MPSP terminology used in Ginseng, many
of the observations we make here are also relevant to other mechanisms which
mimic market pressure. In Ginseng, resource pressure is felt by participants in

prashant.anantharaman.gr@dartmouth.edu

14 D. Movsowitz et al.

the bill they pay, which reflects the damage they caused to the social welfare.
In mechanisms which rely on computing a clearing price (the highest price for
which the demand is equal to the supply or exceeds it), resource pressure is felt
through the increase in the clearing price.

3 Attacks on Traditional Clouds

Cloud computing is one of the most dominant paradigms in the information
technology industry nowadays. More and more companies are moving to cloud
computing solutions, which in turn requires attackers to find new and inven-
tive ways to attack cloud computing systems. In this section we will classify
attack types and explain how to map the internal system infrastructure, how to
determine levels of isolation, and how to detect and limit attacks.

3.1 Classifying Attack Types

Many types of attacks can be launched against cloud computing systems. These
include attacks aimed at obtaining information from innocent users or resource-
freeing attacks (RFAs) to improve personal cloud performance. Younis et al. [27]
survey the different types of cache based side channel attacks and point out
weaknesses in currently researched solutions. Varadarajan et al. [23] show how
to improve a VM’s performance by forcing a competing VM to saturate some
bottleneck (a resource used by the VM). This can slow down or shift the com-
peting applications’ use of a desired resource.

Our goal is to determine which of the above attacks are most likely to be
launched against Ginseng, which are irrelevant, and which are most likely to
succeed. Is it possible, for example, that an attack analogous to the RFA attack
can be launched against Ginseng in order to obtain a maximum amount of
memory at the expense of other system guests? This might be done, for instance,
by slowly raising Pmax out and forcing the rest of the guests to exhaust their
resources up to the point where they need to bid for a smaller amount of memory,
thus freeing memory that the attacker can obtain for a lower bid. This type of
attack can be carried out either by an attacker who is the highest bidder not
allocated memory, or as a part of a grand-scheme collusion with other agents.

3.2 Mapping the Internal System Infrastructure and Determining
Levels of Isolation

A successful attack within a cloud computing system usually requires a profound
understanding of the internal system infrastructure and the capability to map
the system’s users and their level of isolation. Ristenpart et al. [20] showed that
one can inexpensively probe and explore the system to determine the location of
an instance in the cloud infrastructure, determine whether two instances are co-
resident on the same physical machine, launch instances that will be co-resident

prashant.anantharaman.gr@dartmouth.edu

Attacks in the RaaS Context 15

with other users instances, and exploit cross-VM information leakage once co-
resident.

Today it would be very hard—though not impossible—to do what Ristenpart
et al. did in 2009. One reason is that the spot instances of only one zone can contain
tens of thousands of machines. Moreover, machines today are live migrated and
their IP may no longer indicate the IP or identity of guest machines co-located
with them on the same physical machine. Finally, machine types are mixed on
physical machines. All of this makes it harder to get a machine co-resident with
a predesignated victim machine. However, on a RaaS cloud machine an attacker
can directly gain from attacking guests sharing the same physical machine. We
can learn from Ristenpart et al. that if the population is small and there are
no migrations (as in the case of Ginseg today), then it is easier to learn about
neighbors.

Zhang et al. [28] introduced a system called HomeAlone that allows guests to
use cache-based side channel probing in order to determine their level of isolation.
The HomeAlone system allows users to silence their activity in a selected cache
region for a period of time, in which they can monitor cache usage and detect
unexpected activity. This system can be used to find information on other virtual
machines that share the same hardware but do not belong to the same owner.

Caron et al. [5] proposed a placement heuristic that allows guests to deter-
mine the level of security they require by stating co-residency requirements
(alone, friends, enemies) or by stating the level of privacy/security they need.
Ginseng does not currently take into consideration guest preferences regarding
security/privacy levels or their co-residency requirements. This opens the door to
numerous types of attacks that do not exploit the Ginseng protocol itself. In the
future, it might be interesting to explore the option of determining the level of
security/privacy and isolation between guests by allowing them to state bidding
borders (for example a price/memory range that will define co-residency).

3.3 Detecting and Limiting Attacks

Security measures to detect and limit attacks can range from simple alarm sys-
tems (such as alarms triggered when trying to access an unauthorized area) to
complex systems that monitor and learn user actions and performance over time.

1. Dolgikh et al. [7] showed that malicious users (attackers) can be detected in
two phases: the training phase and the detection phase. In the training phase
the system learns and classifies the “normal” behavior of system users. In the
detection phase, user activities are monitored and observed; any deviation
from the“normal” behavior is detected. This work is relevant to Ginseng in
two manners:
(a) Detection of malicious behavior. The attacker may also use the two phase

approach. During the training phase, the attacker gathers information
about the system’s behavior, the neighboring guests, and their bid needs.
Furthermore, the attacker can collect information regarding user sched-
ules that can influence changes in supply and demand. It may even figure

prashant.anantharaman.gr@dartmouth.edu

16 D. Movsowitz et al.

out the best time to attack. This information can be used to plan the
attack, and in particular, the best cues for timing costly attacks. During
the detection phase, the attacker will hunt for those cues, and launch
the attack at the perfect time.
During the training phase, the attacker may be monitored and certain
actions may be considered as “out of the ordinary behavior” and thus
stopped. However, this approach has its risks, as benign agents who
online-learn their best strategy may be misidentified as attackers.

(b) Automatic prevention of malicious behavior. Several mechanisms were
proposed to prevent rapid memory allocation changes. These include
an affine-maximizer based method, which taxes the difference between
allocations [19], and a reclaim factor method [19], which controls the
fraction of the memory that is reclaimed by the system to be sold by
the next auction. This method resembles Waldspurger’s tax on unused
memory [26]. This means that an attack on Ginseng might fail due to
the system’s sluggishness.
We note that the sluggishness fails actions according to the action and
not the intention behind it. Hence, it might also fail benign guest actions,
if they are considered harmful to the system.

2. Shi et al. [22] presented Chameleon, a non-intrusive, low-overhead dynamic
page coloring mechanism that provides strict cache isolation only during
security-critical operations. If an attack on Ginseng is cache based, imple-
menting the Chameleon mechanism may obstruct attempts to attack the sys-
tem.

3. Varadarajan et al. [24] introduced the concept of soft isolation—reducing the
risks of sharing through better scheduling. They show that a minimum run
time guarantee for VM virtual CPUs that limits the frequency of preemp-
tions can effectively prevent existing prime+probe cache-based side-channel
attacks. This particular work is relevant to RaaS machines that use economic
measures to allocate CPU resources, such as CloudSigma, which uses CPU
burst prices. It is not directly relevant to the memory allocation method used
by Ginseng.
Note that Varadarajan et al.’s method protects the system at the cost of
introducing an inefficiency in resource allocation. In that, it resembles the
sluggish mechanisms, which protect the system against quick changes, at the
expense of reducing its responsiveness.

4 Conclusion

We have reviewed several kinds of attacks on traditional clouds and on the new
RaaS cloud. In addition to its vulnerability to regular attacks, an economically
driven hypervisor is also vulnerable to attacks designed specifically for economic
systems, using the special features of the system against it. Therefore, economic
cloud systems have to be designed while considering both types of attacks, and
include built-in defenses. This design might consist of patches to the original

prashant.anantharaman.gr@dartmouth.edu

Attacks in the RaaS Context 17

designs, protecting against specific vulnerabilities. It may even require a whole
new mechanism, which prioritizes privacy and security over other considerations.
There is a large volume of work addressing privacy in distributed systems where
no trusted entity exists [9,11,12,21]. However, it might be enough to assume
that the resource provider, the host and its auctioneer are trusted entities. Data
mining which preserves client privacy [8,10] may be used to reduce the amount
of information that leaks by announcing global data about the auction’s result,
such as Pmin in or Pmax out.

Acknowledgment. This work was partially funded by the Prof. A. Pazi Joint Research
Foundation. We thank Dr. Eran Tromer, Prof. Katrina Ligett, Dr. Arik Friedman and
Shunit Agmon for fruitful discussions.

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The resource-
as-a-service (RaaS) cloud. In: USENIX Conference on Hot Topics in Cloud Com-
puting (HotCloud) (2012)

2. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
Amazon EC2 spot instance pricing. ACM Trans. Econ. Comput. 1(3), 16:1–16:20
(2013)

3. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The rise of
RaaS: the resource-as-a-service cloud. Commun. ACM 57(7), 76–84 (2014)

4. Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., Mu’alem, A.:
Ginseng: market-driven memory allocation. ACM SIGPLAN Not. 49(7), 41–52
(2014)

5. Caron, E., Cornabas, J.R.: Improving users’ isolation in IaaS: virtual machine
placement with security constraints. In: IEEE International Conference on Cloud
Computing (CLOUD), pp. 64–71 (2014)

6. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
7. Dolgikh, A., Birnbaum, Z., Chen, Y., Skormin, V.: Behavioral modeling for suspi-

cious process detection in cloud computing environments. In: IEEE International
Conference on Mobile Data Management (MDM), vol. 2, pp. 177–181 (2013)

8. Friedman, A., Schuster, A.: Data mining with differential privacy. In: ACM Inter-
national Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
493–502 (2010)

9. Friedman, A., Sharfman, I., Keren, D., Schuster, A.: Privacy-preserving distributed
stream monitoring. In: Annual Network and Distributed System Security Sympo-
sium (NDSS) (2014)

10. Friedman, A., Wolff, R., Schuster, A.: Providing k-anonymity in data mining.
VLDB J. 17(4), 789–804 (2008)

11. Gilburd, B., Schuster, A., Wolff, R.: k-ttp: a new privacy model for large-scale dis-
tributed environments. In: ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pp. 563–568 (2004)

12. Gilburd, B., Schuster, A., Wolff, R.: Privacy-preserving data mining on data grids
in the presence of malicious participants. In: International Symposium on High-
Performance Distributed Computing (HPDC), pp. 225–234 (2004)

13. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)

prashant.anantharaman.gr@dartmouth.edu

18 D. Movsowitz et al.

14. Hegeman, J.: Facebook’s ad auction. Talk at Ad Auctions Workshop, May 2010
15. Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecommun. 8,

33–37 (1997)
16. Lazar, A., Semret, N.: Design and analysis of the progressive second price auc-

tion for network bandwidth sharing. Technical report, Columbia University (1998).
http://econwpa.repec.org/eps/game/papers/9809/9809001.pdf

17. Lucier, B., Paes Leme, R., Tardos, E.: On revenue in the generalized second price
auction. In: International Conference on World Wide Web (WWW) (2012)

18. Maillé, P., Tuffin, B.: Multi-bid auctions for bandwidth allocation in communica-
tion networks. In: IEEE INFOCOM (2004)

19. Posener, E.: Dynamic memory allocation in cloud computers using progressive
second price auction. Master’s thesis, Technion (2013)

20. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communications Security (SIGSAC), pp. 199–212 (2009)

21. Schuster, A., Wolff, R., Gilburd, B.: Privacy-preserving association rule mining in
large-scale distributed systems. In: Cluster, Cloud and Grid Computing (CCGrid),
pp. 411–418 (2004)

22. Shi, J., Song, X., Chen, H., Zang, B.: Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pp. 194–199 (2011)

23. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In:
ACM Conference on Computer and Communications Security (SIGSAC), pp. 281–
292 (2012)

24. Varadarajan, V., Ristenpart, T., Swift, M.: Scheduler-based defenses against cross-
vm side-channels. In: Usenix Security (2014)

25. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Finance 16(1), 8–37 (1961)

26. Waldspurger, C.A.: Memory resource management in Vmware ESX server.
USENIX Symp. Operating Syst. Des. Implementation (OSDI) 36, 181–194 (2002)

27. Younis, Y., Kifayat, K., Merabti, M.: Cache side-channel attacks in cloud com-
puting. In: International Conference on Cloud Security Management (ICCSM), p.
138. Academic Conferences Limited, (2014)

28. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: co-residency detection in
the cloud via side-channel analysis. In: IEEE Symposium on Security and Privacy
(SP), pp. 313–328. IEEE (2011)

prashant.anantharaman.gr@dartmouth.edu

http://econwpa.repec.org/eps/game/papers/9809/9809001.pdf

Trustworthy Self-Integrating Systems

John Rushby(B)

Computer Science Laboratory, SRI International,
333 Ravenswood Avenue, Menlo Park, CA 94025, USA

rushby@csl.sri.com

Abstract. Patients in intensive care often have a dozen or more med-
ical devices and sensors attached to them. Each is a self-contained system
that operates in ignorance of the others, and their integrated operation as
a system of systems that delivers coherent therapy is performed by doc-
tors and nurses. But we can easily imagine a scenario where the devices
recognize each other and self-integrate (perhaps under the guidance of
a master “therapy app”) into a unified system. Similar scenarios can
be (and are) envisaged for vehicles and roads, and for the devices and
services in a home. These self-integrating systems have the potential
for significant harm as well as benefit, so as they integrate they should
adapt and configure themselves appropriately and should construct an
“assurance case” for the utility and safety of the resulting system. Thus,
trustworthy self-integration requires autonomous adaptation, synthesis,
and verification at integration time, and this means that embedded auto-
mated deduction (i.e., theorem provers) will be the engine of integration.

1 Introduction

An invited paper provides an opportunity for more speculative inquiry than
usual, and I will use this chance to sketch some of the challenges and opportu-
nities in a class of systems that I think is just around the corner, but that does
not seem to be widely recognized.

We are familiar with systems built from components, and are becoming so
with systems of systems. Components are intended as parts of a larger whole and
their interfaces and functionality are designed with that in mind. Systems, on
the other hand, are intended to be self-sufficient and to serve a specific purpose,
so they often cooperate awkwardly when combined as systems of systems. Open
systems are intended to cooperate with others and they restore some of the
characteristics of components while still operating as self-sufficient individually
purposeful systems. Open Adaptive Systems (OAS), a popular topic of current
interest, are open systems that are capable of adjusting their behavior to function
better in systems of systems.

The systems that I am interested in here take this one step further: they do
not merely adapt to cooperate better with their neighbors, but self-integrate to
deliver some new capability or service, possibly under the direction of an appli-
cation designed for that purpose. The integrating application or its surrogates

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 19–29, 2016.
DOI: 10.1007/978-3-319-28034-9 3

prashant.anantharaman.gr@dartmouth.edu

20 J. Rushby

will seek useful capabilities among its peers, cause them to adapt or configure
appropriately, and synthesize suitable wrappers, shims, or glue. This behavior
has something in common with Service Oriented Architecture (SOA) as well
as OAS, but what I want to posit is that the capabilities and services so con-
structed will be used for somewhat critical purposes where assurance of function
and safety should be provided. Skeptics may concur that self-integrating systems
are likely, but not their application as critical systems that require assurance.
Accordingly, in the next section I sketch some scenarios proposed by others and
then, in Sect. 3 outline some current and recent work. In Sect. 4, I explain why I
believe that automated verification and synthesis are required at integration-time
and I describe how modern developments in automated deduction can provide
these. Section 5 summarizes and concludes that embedded automated deduction
is the enabling engine for trustworthy self-integration.

2 Scenarios

We can build quite complex software-intensive systems that are individually safe:
civil aircraft are a good example, as there have been no serious aircraft incidents
due to faulty software.1 There is a price to this record of safety, however, for
current methods of safety assurance are based on strongly predictable, often
deterministic, behavior. This prohibits even simple kinds of adaptive or intelli-
gent behavior, such as control laws that optimize for the circumstances of each
flight (e.g., weight and weight distribution, stiffness of actuators, etc.).

Furthermore, assurance applies to each system in isolation: there are no
guarantees that the interaction of individually safe systems will be safe. Thus,
although individual aircraft are safe, their interaction is managed by another,
separate system for air traffic management. The move to NextGen, where indi-
vidual aircraft take more responsibility for the safety of their interactions, as
cars do on the road, is proving to be a challenging endeavor.

The future will be about interacting systems. Interaction will come about
because, as systems become more ubiquitous and embedded in our lives, so
they necessarily interact with each other through the “plant.” For example, cars
and traffic lights interact to create, or to avoid, traffic jams. Currently, there
is (at least in the USA) essentially no management of this interaction, so cars
waste gasoline accelerating and decelerating from one uncoordinated red light
to another, or lights show green while traffic cannot move because it is backed
up from the uncoordinated red light ahead. As systems become better able to
communicate, so we expect them to become more open and to integrate in a pro-
ductive manner, so that traffic lights and cars should communicate and respond
to changing traffic and the behavior of neighboring lights. Later, conventional
traffic lights can be replaced or supplemented by virtual traffic lights that interact
directly with car systems and can be deployed whenever and wherever needed.

1 Due to faulty requirements, there have been incidents in systems implemented in
software, but there have been no incidents due to software development.

prashant.anantharaman.gr@dartmouth.edu

Trustworthy Self-Integrating Systems 21

Integration of large scale systems such as air and ground transportation
presents formidable challenges, so it is not likely they will self-integrate any time
soon, but it seems quite plausible for smaller systems. We already see this in the
nascent “Internet of Things” (IoT). For example, I recently added a Chromecast
to the large TV display in my living room, turned on the DLNA server built in to
the Windows machine that stores my digital photos, and installed an app on my
Android phone; I can now view my photos on the large display (transmitted over
WiFi from the PC in another room) while using my phone to control everything
from my couch. It is remarkable that this works at all, still more remarkable
how easy it is to set up, but sadly it does not work very well. The photos are
transmitted at full resolution despite the limited (1920× 1080) resolution of the
display. My WiFi is slow and the PC is in a room distant from the router; as
a result one photo may still be in the process of transmission when the timer
in the Android app calls for the next one; then everything hangs; sometimes a
restart is sufficient, and sometimes a full reboot is needed. Viewing my photos
is hardly a critical endeavor, but it is not uncommon for things that work “well
enough” to undergo “mission creep” and become part of some critical enterprise
(e.g., we could imagine my setup for home photos being used to display images
needed during medical procedures), which is fine—until things fail.

Goldman and colleagues describe several intriguing applications for a more
trustworthy IoT in a hypothesized “Operating Room of the Future” and “Inten-
sive Care Unit of the Future” [1]. I sketch a few of these.

Some seriously ill patients are maintained on a heart-lung machine while
undergoing surgery. And sometimes an X-ray is required during the procedure.
Surgeons may temporarily turn off the heart-lung machine so the patient’s chest
is still while the X-ray is taken. They must then remember to turn it back on.
We can posit a scenario where the heart-lung machine and the X-ray camera
recognize each other and negotiate their safe interaction. In the simplest case,
the camera could request a still period from the heart-lung machine; in a more
attractive approach, the heart-lung machine could notify the camera of the null
points during its inflation and deflation of the chest.

A patient under general anesthesia is generally provided an enriched oxy-
gen supply. Some throat surgeries use a laser and this can cause burning (or
even fire) in the presence of abundant oxygen, so the human anesthetist does
not enrich the oxygen supply in this case. There is an obvious risk of human
error in this scenario. Accordingly, it would surely be good if the laser and the
anesthesia machine could recognize each other so that the laser could request
reduced oxygen. Of course, we do not want other (possibly faulty) devices to
cause the oxygen supply to be reduced. It is also possible that a faulty anesthesia
machine may not reduce the oxygen, so we would like a safety interlock that does
not allow the laser to light unless the oxygen has actually been reduced. Con-
versely, there may be emergency scenarios where the patient’s health or survival
urgently needs enriched oxygen (this may be detected by a “pulse oximeter,” the
third component of a larger integrated system) and we would like the combined

prashant.anantharaman.gr@dartmouth.edu

22 J. Rushby

system to support this, either by an override that autonomously shuts off the
laser and enriches the air supply, or by alerting the human operators.

Accurate blood pressure sensors can be inserted into an intravenous (IV) fluid
supply. The reading needs to be corrected for the difference in height between the
sensor (which can be standardized by the height of the IV pole) and the patient.
Some hospital beds have a height sensor, but this is a fairly crude device to
assist nurses in their activities. We can imagine an ICU where blood pressure
data from IV sensors and height measurements from the beds are available on the
local network and integrated by monitoring and alerting services. These services
need to be sure the bed height and blood pressure sensor readings are from
the same patient, and there needs to be an ontology that distinguishes height-
corrected and uncorrected sensor readings. The noise- and fault-characteristics of
the bed height sensor mean that alerts should be probably driven from changes
in the uncorrected reading; alternatively, since bed height will seldom change,
it is possible that a noise and fault-masking wrapper could be synthesized for
this value.

A machine for Patient Controlled Analgesia (PCA) administers a pain-killing
drug to patients on demand (when the patient presses a button). To prevent
overdoses, PCA devices will not deliver the drug when thresholds in a built-in
model (whose parameters can be programmed by a nurse) are exceeded. The
thresholds are conservative, so patients may sometimes experience unrelieved
pain unnecessarily. A pulse oximeter (PO) attached to the patient provides a
specific indication of overdose, so the combination of a PCA and PO could
provide safer and greater relief. We can imagine the combination of a standard
PCA, a PO, and an application that manipulates the thresholds of the PCA
based on data from the PO to allow this improved capability. As with the blood
pressure example, we need to be sure that the two devices are attached to the
same patient, and that all parties interpret the measurements consistently (i.e.,
there is a shared ontology). Furthermore, the integrating app and its assurance
case must deal suitably with new hazards due to integration and possible faults
therein. For example, if the app works by blocking button presses when an
approaching overdose is indicated, then loss of communication could remove the
safety function. If, on the other hand, it must approve each button press, then
loss of communication may affect pain relief but not safety. In both cases, it is
necessary to be sure that faults in the blocking or approval mechanism cannot
generate spurious button presses.

Most will agree, I think, that the integrated systems sketched above could
be readily constructed as bespoke systems by suitably skilled teams. But what I
have in mind is that these systems “self assemble” from their separate component
systems given little more than a sketch of the desired integrated function. The
sketch might be a formal specification, or an idealized reference implementation
that assumes fault-free and safe operation of the individual systems.

Beyond automation of this self assembly, the challenge is to provide assurance
for safety of the integrated system. The state of the art in safety assurance is the
assurance “case,” which is an argument, based on evidence about the system and

prashant.anantharaman.gr@dartmouth.edu

Trustworthy Self-Integrating Systems 23

its design and construction, that certain claims (usually about safety but possibly
about other important properties such as security or performance) are true [2].
When systems interact, we would like the assurance case for their composition to
be assembled in a modular or compositional way from the cases for the individual
systems. This is difficult because, as we noted previously, safety generally does
not compose: that is to say the composition of safe systems it not necessarily safe,
primarily because their interaction may introduce new hazards. For example, the
laser and anesthesia machine may be individually safe, but their integration has
a new hazard (burning in an oxygen-enriched air supply). The construction of
the joint assurance case is therefore a fairly difficult process, typically requiring
human insight, which presupposes that system integration is a deliberate and
planned procedure.

For the near term, I expect that system self-integration will be initiated by an
application that embodies the purpose of the integration (e.g., a “safe analgesia
app” that integrates a PCA and PO) but we can imagine that future systems
will integrate spontaneously as they discover each other, similar to the way that
human teams assemble to solve difficult problems (although even here there
must be some agreed purpose for the teaming). And as with human teams, the
integration may involve exchange of assumptions and claims, negotiation, and
some relinquishing of autonomy and acceptance of constraints. Clearly this is an
ambitious vision, but there is recent and current work that addresses many of
the precursor challenges.

3 Recent Work

DEOS (Dependable Operating Systems for Embedded Systems Aiming at Prac-
tical Applications) was a large project in Japan that ran from 2008 to 2013.
The overall ambition of DEOS was to ensure the dependability of open systems
subject to change [3]; thus, it focuses on the evolution of systems rather than
their self-integration. In DEOS, a system assurance case is maintained as part
of the system and is used to guide its adaptation to failure and to changed
requirements. For local adaptation (e.g., responding to failure), an online repre-
sentation of the assurance case (called a D-Case) is used to guide adjustments to
the system, potentially automatically, under the guidance of a scripting language
call D-Script and associated tools [4]. Human intervention is required for larger
adaptations, but this is assisted by, and maintains, the assurance case.

The Semantic Interoperability Logical Framework (SILF) was developed
by NATO to facilitate dependable machine-to-machine information exchanges
among Command and Control systems [5]. SILF employs an extensive ontol-
ogy to describe the content of messages exchanged, and a mediation mechanism
to translate messages as needed. The mediation can be performed by a cen-
tralized hub, or by wrappers at either the sender or receiver. ONISTT [6] is
an SRI project that developed and prototyped many of the ideas in SILF; it
was primarily employed to enable the integration of live and virtual simulation
systems for military training. Using ontological descriptions, ONISTT is able

prashant.anantharaman.gr@dartmouth.edu

24 J. Rushby

automatically to synthesize adapters that allow incompatible message streams
to be connected (e.g., different time representations, or different accuracies or
units of measurement). It can also decide when incompatibilities are too great
to meet the purpose of integration.

The Frauenhofer Institute for Experimental Software Engineering in
Kaiserslautern, Germany, has done much work on the safety assurance of OAS,
mostly in the context of farm tractors and the very sophisticated implements
that attach to them. Trapp and Schneider provide a comprehensive survey of
safety assurance for OAS [7]. They frame their survey in the context provided
by Models@Runtime (M@RT), which is an emerging framework for organizing
OAS. The idea is that if open systems are to adapt to each other, they need
to know something about each other, and one way to do this is to exchange
models for their individual behavior and assumptions. It is a matter for nego-
tiation what constitutes a “model” in this context. In DEOS, for example, it
is the D-CASE representation of an assurance case, in SILF and ONISTT it
is ontologies in some standardized description logic (none of DEOS, SILF and
ONISTT describe themselves in M@RT terms, but they fit the paradigm).

Trapp and Schneider extend the M@RT idea to Safety Models@Runtime
(SM@RT) for self-integrating systems. They distinguish four levels of sophisti-
cation and difficulty according to how ambitious is the integration, and note that
only the first two are feasible at present. The simplest class “Safety Certificates
at Runtime” applies when it is sufficient for system safety that each component
system maintains its own local safety objective. Then come “Safety Cases at Run-
time” where component system safety cases guide adaptation and are integrated
dynamically to deliver a safe and assured assembly (e.g., one system may need
to demonstrate that it delivers properties assumed by another). Next is “V&V
at Runtime,” where it may be that one system cannot deliver the assumptions
required by another, so more extensive adjustment are needed (e.g., wrapping or
runtime monitoring to exclude some class of faults). Finally, “Hazard Analysis
and Risk Assessment at Runtime” applies when essentially the full procedure
of safety assurance (e.g., identification and elimination or mitigation of hazards,
and assurance that this has been done, accurately and completely) is performed
on integration. Personally, I am not convinced the “at Runtime” appellation is
suitable for all these notions; certainly runtime monitoring is one way to ensure
certain properties, but the generic process employed here is analysis, adaptation,
and assurance at integration-time.

4 Prospects

The recent work outlined above provides some impressive accomplishments and
attractive frameworks in which to view the issues of self-integration. What I
wish to propose is that automated deduction provides the capabilities needed
to realize the more challenging classes of trustworthy self-integration, and that
such capabilities (essentially, theorem provers) will be the engines of integration.

From the scenarios in Sect. 2, we see that ontology matching is an important
capability: all parties need to be talking about the same things (patient identity,

prashant.anantharaman.gr@dartmouth.edu

Trustworthy Self-Integrating Systems 25

blood pressure, oxygen levels, drug dosage) in the same way and using the same
units. As mentioned in Sect. 3, SILF proposes that mediation mechanisms are
employed to ensure this and ONISTT constructs such mechanisms automati-
cally using ontological specifications for the data streams. The purpose of the
integration is similarly represented in a task ontology. These ontological specifi-
cations are given in a description logic (the Web Ontology Language, OWL) and
construction of the mediators is accomplished by a dedicated program written
in Prolog.

Going beyond this, we can imagine that systems document not only the
ontologies for their data streams, but specifications of their properties (e.g., those
they assume and those they guarantee). Mediators may then have to provide
more complex services than ontology matching: for example, they may need to
enforce a certain invariant. A “runtime monitor” provides a simple way to do this:
it is separate function that observes state variables of the system and evaluates a
predicate representing the desired invariant. Should the predicate ever evaluate
to false, then the monitor signals an alarm (to be handled by another part of the
system, or by a human operator) or halts the system. If the invariant predicate
is available in a suitably formal form (perhaps in the local assurance case) then
software for the monitor can be synthesized automatically. Runtime monitors
are the core of Runtime Verification and associated methods of assurance [8,9],
whose guarantees can be very strong [10].

The ideas of runtime mediation and monitoring can be extended from ontol-
ogy matching and invariant checking to more complex functions such as masking
some kinds of faults or providing supervisory control. The software to accomplish
these functions is more complex than simply implementing a given predicate, but
modern methods of synthesis can often automate its construction. These meth-
ods are based on automated deduction (i.e., theorem proving).

Checking the satisfiability of propositional (i.e., Boolean) formulas is the
simplest problem in automated deduction, and is also the quintessential NP-
Complete problem, meaning its worst computational complexity is probably
exponential. Yet modern satisfiability (SAT) solvers are remarkably efficient on
realistic problems, often solving examples with thousands of variables in frac-
tions of a second. Their efficiency, and the generality of the SAT problem, are
such that the best way to solve many search problems is first to transform them
to a SAT instance, then solve that, and finally transform back to the original
problem. Satisfiability Modulo Theories (SMT) extends SAT by adding support
for useful theories such as real and integer arithmetic, uninterpreted functions,
arrays, and several other datatypes used in software. SMT solvers are at the core
of many modern tools for automated program analysis and verification, including
static analyzers, model checkers, and test generators.

Efficient automated verification methods open the door to effective auto-
mated synthesis: crudely, this is done by enumerating candidate solutions, apply-
ing automated verification to each in turn, and selecting the first that succeeds.
Of course, this crude approach must be refined to yield a practical synthesis pro-
cedure. The first required refinement is a way for a human user to suggest the

prashant.anantharaman.gr@dartmouth.edu

26 J. Rushby

space of likely solutions. An attractive way to do this is for the user to specify a
sketch or template and leave the synthesis search procedure to fill in the details.

The “glue” elements needed in self-integration are generally straightline pro-
grams and single loops, and the formulas that correspond to these (e.g., invari-
ants). A trivial example of the template for an invariant is Ax + By < C for
some parameters A, B, and C. Formally, this can be expressed as

∃A,B,C : ∀x, y : Ax + By < C (1)

where x and y are program variables, and the parameters A, B, C must be
instantiated by the synthesis procedure. Variants on this formulation can be used
to express assumption synthesis (find the weakest environment in which a given
component meets its requirements), supervisory controller synthesis (design an
algorithm to selectively disable component actions so that it satisfies some goal
in the face of uncontrollable actions by the environment), and full synthesis
(design an algorithm to achieve some goal).

The second refinement to the crude synthesis procedure sketched above is
an efficient way to search for suitable values for the parameters A, B, and C.
Observe the Exists-Forall (EF) two-level quantification in the formulation (1)
above. Standard SMT solvers solve single-level Exists and Forall problems, but
recent developments extend this to EF solving using refinements of the search
procedure sketched above [11]. An EF-SMT solver uses an ordinary SMT solver
as a component and works by iteratively performing two steps.

1. Guessing (cleverly) instantiations for the Exists variables and querying the
SMT solver with the resulting Forall formula. If this succeeds, we are done.

2. If it fails, use the result (i.e., counterexample) of the Forall query to help in
finding the next instantiation of the Exists variables.

The key in making this iteration efficient is to use (i.e., learn from) the result
of failed verification (Forall) steps to prune the search space for subsequent
synthesis (Exists) steps. There is a tradeoff between generality and performance
in formal synthesis. EF-SMT handles richer logics than the description logics
of ONISTT, but the specialized synthesis procedure of the latter outperforms
EF-SMT within its domain. Nonetheless, we can expect continued progress in
EF and standard SMT solving and this will eventually lead to superior synthesis
performance.2

Both SMT and EF-SMT solvers use learning from failed candidate solutions
to optimize their search. Self-integrating systems can also use explicit learning
methods to cope with noisy sensors, erratic components, or external attack [12].
The idea is to learn a “safety envelope” for the system under controlled, quies-
cent, conditions and then monitor this in operation. The safety envelope is an
invariant (which may consist of sub-invariants for each learned “mode” of the
system) and its violation can indicate an attack, noise, or erratic (faulty) behav-
ior. Depending on context, response to violation of a safety envelope could be to
2 We should note that the ONISTT technology also evolves, and the current system

uses the FLora-2 reasoning system for F-logic.

prashant.anantharaman.gr@dartmouth.edu

Trustworthy Self-Integrating Systems 27

raise an alarm or to replace “bad” values by recent “good” ones, or by defaults.
The idea of a learned safety envelope (i.e., a conservative model) is quite differ-
ent than the predictive models (e.g., Kalman filters) popular in control theory
and serves a different and novel purpose.

Given the ingredients described above, we can propose that as self-integrating
systems come together they exchange ontologies, models, specifications of their
assumptions and guarantees, and assurance arguments. All of these are poten-
tially formal descriptions; although an assurance case is generally expected to be
a persuasive rather than deductively valid argument, a case can be made that
its uncertainties should be restricted to the interpretation of evidence, not the
application of argument to its claims [13].

We can then further propose that the mechanisms of automated formal ver-
ification, synthesis, and learning should go to work with the aim of establishing
and maintaining local and global safety properties and their attendant assurance
arguments.

This raises the question what is the purpose of the integrated system and
what is the safety claim of the integrated system. As a first step (corresponding
to Trapp and Schneider’s “Safety Certificates at Runtime” and “Safety Cases
at Runtime”) we might suppose that the goal is for each component system to
maintain its local safety claim despite the stresses of interaction. For example, a
farm tractor must continue to brake safely when an implement is attached, and
to do this it needs to know the weight and center of gravity of the implement,
and its braking performance.

Construction of an assurance case for the integrated system will employ auto-
mated deduction and synthesis: deduction to detect potential violations of indi-
vidual safety claims in the integrated system (e.g., due to a property mismatch
in an assume-guarantee argument), and synthesis to construct monitoring and
recovery procedures to overcome these.

For more advanced integration, I propose that the purpose and safety claim
of the integrated system will be associated with an “integration app” that guides
the assembly. This might approach Trapp and Schneider’s “V&V at Runtime,”
where the component systems not only maintain safety in each other’s presence,
but also deliver some new, integrated (i.e., positively emergent) behavior. For
example, a standard pulse oximeter and PCA will not do anything interesting
when integrated unless a suitable “safe analgesia app” takes the initiative to close
the loop. We can imagine that the design and purpose of the “safe analgesia app”
are indicated as formal templates or sketches, whose details are filled in using
EF-SMT synthesis that uses the capabilities and properties announced by the
attached PO and PCA.

5 Conclusion

I have described a view of self-integrating systems that draws on many current
ideas in the Internet of Things, Service Oriented Architecture, Open Adaptive
Systems, and Models@Runtime. I then argued that in many applications, these

prashant.anantharaman.gr@dartmouth.edu

28 J. Rushby

self-integrating systems need to be trustworthy and I outlined some examples in
medical devices.

I hope then to have made the case that trustworthy self-integration requires
automated verification and automated synthesis of monitors, adapters, and medi-
ators at integration-time. I sketched how modern technology for automated
deduction, specifically SMT and EF-SMT solvers, can perform these tasks.

Pulling these various threads together, I propose that a modest but useful
class of trustworthy self-integrating systems is within reach, and that embedded
automated deduction is the enabling engine for this development.

Looking further into the future, we can speculate on self-integration of sys-
tems that are individually highly adaptive or intelligent. I believe this will be
a challenging endeavor: almost all crashes of modern aircraft are due to flawed
interaction between automated aircraft systems and the intelligent human crew.
Although usually ascribed to human error, a more nuanced assessment sees flaws
in the manner of interaction, with each party having insufficient insight into the
other’s state and intentions. Thus, it may be that the information that must be
exchanged between such advanced systems is of a more strategic character than
the tactical information discussed here. For the most advanced kinds of systems,
it may be that what is needed is agreement on a shared system of ethics.

Acknowledgments. This work was partially funded by SRI International. Many of
the ideas assembled here originated in discussions with Dave Hanz of SRI, who also
provided helpful comments on the paper.

References

1. Whitehead, S.F., Goldman, J.M.: Getting connected for patient safety: how medical
device “plug-and-play” interoperability can make a difference. Patient Safety and
Quality Healthcare (2008). http://www.psqh.com/janfeb08/connected.html

2. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report
SRI-CSL-15-01, Computer Science Laboratory, SRI International, Menlo Park, CA
(2015)

3. Tokoro, M.: Open systems dependability-dependability engineering for ever-
changing systems. CRC Press, Boca Raton (2013)

4. Kuramtisu, K.: D-script: dependable scripting with DEOS process. In: 3rd Inter-
national Workshop on Open Systems Dependability (WOSD), Workshop held in
association with ISSRE 2013, Pasadena, CA, pp. 326–330 (2013)

5. NATO Science and Technology Organization, Neuilly-Sur-Seine, France: Frame-
work for Semantic Interoperability. STO Technical report TR-IST-094 (2014)

6. Ford, R., Hanz, D., Elenius, D., Johnson, M.: Purpose-aware interoperability: the
ONISTT ontologies and analyzer. In: Simulation Interoperability Workshop. Num-
ber 07F-SIW-088, Simulation Interoperability Standards Organization (2007)

7. Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey. In:
Bencomo, N., France, R., Cheng, B.H.C., Assmann, U. (eds.) Models@run.time.
LNCS, vol. 8378, pp. 279–318. Springer, Heidelberg (2014)

8. Rushby, J.: Kernels for safety? In: Anderson, T. (ed.) Safe and Secure Computing
Systems, pp. 210–220. Blackwell Scientific Publications (1989). (Proceedings of a
Symposium held in Glasgow, October 1986)

prashant.anantharaman.gr@dartmouth.edu

http://www.psqh.com/janfeb08/connected.html

Trustworthy Self-Integrating Systems 29

9. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

10. Littlewood, B., Rushby, J.: Reasoning about the reliability of diverse two-channel
systems in which one channel is “possibly perfect”. IEEE Trans. Softw. Eng. 38,
1178–1194 (2012)

11. Dutertre, B.: Solving Exists/Forall problems with Yices. In: SMT Workshop 2015
(held in association with CAV), San Francisco, CA (2015)

12. Tiwari, A., Dutertre, B., Jovanović, D., de Candia, T., Lincoln, P.D., Rushby,
J., Sadigh, D., Seshia, S.: Safety envelope for security. In: Proceedings of the 3rd
International Conference on High Confidence Networked Systems (HiCoNS), pp.
85–94. ACM, Berlin (2014)

13. Rushby, J.: On the interpretation of assurance case arguments. In: 2nd Interna-
tional Workshop on Argument for Agreement and Assurance (AAA 2015), Kana-
gawa, Japan (2015)

prashant.anantharaman.gr@dartmouth.edu

Contributed Papers

prashant.anantharaman.gr@dartmouth.edu

HiRE - A Heuristic Approach for User
Generated Record Extraction

S. Chandrakanth and P. Santhi Thilagam(B)

National Institute of Technology Karnataka, Surathkal, Karnataka, India
{chandrakanthselvakumar,santhisocrates}@gmail.com

Abstract. User Generated Content extraction is the extraction of user
posts, viz., reviews and comments. Extraction of such content requires
the identification of their record structure, so that after the content is
extracted, proper filtering mechanisms can be applied to eliminate the
noises. Hence, record structure identification is an important prerequi-
site step for text analytics. Most of the existing record structure identi-
fication techniques search for repeating patterns to find the records. In
this paper, a heuristic based approach is proposed. This method uses
the implicit logical organization present in the records and outputs the
record structure.

Keywords: Web content mining · User posts · Record boundary ·
Record extraction · Heuristics

1 Introduction

Record boundary identification is a problem associated with mining records from
web sites. This paper aims to concentrate extensively on the record boundary
identification and extraction of user generated (UG) records. The user generated
records are entries like blogs, reviews, posts on discussion forums, etc. The user
generated records are a good source for business intelligence inference. Web
search engines could use them to provide value added services such as result
collation or summarization.

Record structure identification is the process of isolating the records from
the source html documents and thereby the information contained in them. It
can also be viewed as a problem of noise filtering where the noises are the other
information such as ads, scripts etc., that might be found on a web page. Struc-
tural information of the record is helpful in analyzing the meta-data and user
generated post. Hence there is a need to conserve the structure and the format-
ting data of the page. A new heuristic based algorithm is proposed to identify
and extract user generated records that conserves the structural organization of
the record. The structural organization of the pages containing such UG records
is exploited to find individual records.

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 33–37, 2016.
DOI: 10.1007/978-3-319-28034-9 4

prashant.anantharaman.gr@dartmouth.edu

34 S. Chandrakanth and P. Santhi Thilagam

2 Related Works

OMINI [1], one of the earliest heuristic based methods, uses a lot of heuristics
developed based on assumed characters of a record. RoadRunner [2] compares
multiple pages from the same site to find record structure. IEPAD [3] identify
repeating structures using Patricia trees which are constructed based on the
tag structure of the page. MDR [4] identifies the repeating tag structures that
are likely to be present in regions containing multiple records. DEPTA [5] and
NET [6] were improvements on MDR. TPC [7] uses visual cues and the intuition
that data region to be extracted. MiBAT [8] uses several similarity metrics to
identify anchor points, which are regions that are similar across the records.
Then MiBAT grows from those points on either direction till the boundary of
each record is determined.

Most of the works in web content extraction have concentrated on extracting
product data records. These records have similar structure with least deviation
in structure between one another. These methods may not be suitable for user
generated records due to the highly irregular structure which is the challenge
that is addressed in this paper.

3 Proposed Method a Heuristic Algorithm for Record
Extraction (HiRE)

In this paper a heuristic based method (HiRE) is proposed for record boundary
identification. The proposed heuristic is based on the logical organization of the
web page, and is a modified version of the heuristic proposed in Text to Tag Ratio
(TTR) [9]. The TTR heuristic points to the sections that contain the most text.
This property/heuristic namely “the more the TTR value, the higher will be
the text content” has been modified and used in this paper. The modification is
the calculation of TTR at node level instead of at line level, which is known as
Node-Level Text to Tag Ratio (NTTR).

Instead of searching for the records, we find the root of the records. The
NTTR is used to narrow down to the region that contains the records. The root
of the records is identified by examining the html address patterns obtained
from the region pointed by the NTTR metric and by extracting similar address
patterns. Then, all the records are obtained by exploiting the parent-child rela-
tionship among them. There may be nodes that are child to the root of the
records node that are not actually records. To filter these nodes, a text based
similarity metric called Jaro-Winkler distance [10] is used. XML parsers are used
on html tags of the source document and html tags are considered as Xpath tags
to access and process the document. The steps that are incorporated in HiRE
are as follows:

Step 1: Clean the input document. The input document is checked for formatting
and unwanted tags are removed. Attributes are added to uniquely identify the
tags.

prashant.anantharaman.gr@dartmouth.edu

HiRE - A Heuristic Approach for User Generated Record Extraction 35

Step 2: Apply NTTR on document and get Xpath address of node. Once the
NTTR values of all the nodes in the document are calculated, the node with the
maximum NTTR value is found and the Xpath of this node is obtained.

Step 3: Extract Xpaths of nodes with similar address structure. The Xpaths of
the nodes in the document are compared with the Xpath of the node with the
maximum NTTR and similar addresses are extracted.

Step 4: Identify the root records. On the list of similar Xpath addresses, the root
of records is the node with the longest and highest occurrence count. The level
one child nodes of the root node are the record nodes.

Step 5: Remove non-record nodes. The Xpath address of the child nodes are
analyzed using the Jaro-Winkler distance. The nodes with most deviation are
ignored.

Table 1. Sample Results of HiRE

Website Records Records Precision Recall Running

present found (%) (%) time

(seconds)

http://broadbandforum.in/airtel-

broadband/30121-airtel-broadband-

please-help-me/

9 9 100 100 1.037

http://www.wargamer.com/forums/posts.

asp?t=581598

6 6 100 100 .650

http://www.sitepoint.com/forums/

showthread.php?773093-Please-Review-

My-Webmaster-Blog

4 4 100 100 .863

http://bikeshops.mtbr.com/cat/united-

states/alabama/bikeshop/cahaba-

cycles/prd\ 368898\ 6213crx.aspx

5 0 0 0 .853

http://www.notebookforums.com/t/238619/

hp-ultrabook-folio-13-9hrs-battery-

performance

1 0 0 0 .872

http://www.physicsforums.com/showthread.

php?t=296748

16 16 100 100 1.464

http://www.battlefront.com/community/

showthread.php?t=95968

8 8 100 100 1.145

http://windows7forums.com/windows-7-

games/23292-running-32bit-games-64bit.

html

4 4 100 100 1.130

http://www.tomshardware.com/forum/

7734-63-installing-programs-windows

10 10 97.78 100 1.175

4 Discussion on Results

The tests were done on system running Windows 7 OS with 8 GB RAM. HiRE is
coded in Java. The sites for testing are chosen randomly with varying number of

prashant.anantharaman.gr@dartmouth.edu

http://broadbandforum.in/airtel-broadband/30121-airtel-broadband-please-help-me/
http://broadbandforum.in/airtel-broadband/30121-airtel-broadband-please-help-me/
http://broadbandforum.in/airtel-broadband/30121-airtel-broadband-please-help-me/
http://www.wargamer.com/forums/posts.asp?t=581598
http://www.wargamer.com/forums/posts.asp?t=581598
http://www.sitepoint.com/forums/showthread.php?773093-Please-Review-My-Webmaster-Blog
http://www.sitepoint.com/forums/showthread.php?773093-Please-Review-My-Webmaster-Blog
http://www.sitepoint.com/forums/showthread.php?773093-Please-Review-My-Webmaster-Blog
http://bikeshops.mtbr.com/cat/united-states/alabama/bikeshop/cahaba-cycles/prdprotect unhbox voidb@x kern .06emvbox {hrule width.3em}368898protect unhbox voidb@x kern .06emvbox {hrule width.3em}6213crx.aspx
http://bikeshops.mtbr.com/cat/united-states/alabama/bikeshop/cahaba-cycles/prdprotect unhbox voidb@x kern .06emvbox {hrule width.3em}368898protect unhbox voidb@x kern .06emvbox {hrule width.3em}6213crx.aspx
http://bikeshops.mtbr.com/cat/united-states/alabama/bikeshop/cahaba-cycles/prdprotect unhbox voidb@x kern .06emvbox {hrule width.3em}368898protect unhbox voidb@x kern .06emvbox {hrule width.3em}6213crx.aspx
http://www.notebookforums.com/t/238619/hp-ultrabook-folio-13-9hrs-battery-performance
http://www.notebookforums.com/t/238619/hp-ultrabook-folio-13-9hrs-battery-performance
http://www.notebookforums.com/t/238619/hp-ultrabook-folio-13-9hrs-battery-performance
http://www.physicsforums.com/showthread.php?t=296748
http://www.physicsforums.com/showthread.php?t=296748
http://www.battlefront.com/community/showthread.php?t=95968
http://www.battlefront.com/community/showthread.php?t=95968
http://windows7forums.com/windows-7-games/23292-running-32bit-games-64bit.html
http://windows7forums.com/windows-7-games/23292-running-32bit-games-64bit.html
http://windows7forums.com/windows-7-games/23292-running-32bit-games-64bit.html
http://www.tomshardware.com/forum/7734-63-installing-programs-windows
http://www.tomshardware.com/forum/7734-63-installing-programs-windows

36 S. Chandrakanth and P. Santhi Thilagam

posts and with different types of page templates. The overall percentage of pages
on which HiRE gave 100 percent precision and recall was around 85 percent of
the total number of websites tested [11]. Table 1 lists a subset of the test results.

The method works when the following conditions are met: (i) the page has
only user generated records (ii) the page contains more than one record and
(iii) the region within the record has the highest NTTR. These requirements
are satisfied in case of forum and discussion pages. The system fails when the
page contains only one user generated record or if any section other than the
one containing the record has the highest NTTR. However, our testing results
show that the possibility of the latter occurring is very low.

5 Conclusion

The HiRE proposed in this paper is an extension of TTR heuristic to extract
record boundaries for records from web pages. The contributions in HiRE are as
follows:

– Proposition of NTTR metric to identify nodes with highest text content
– Finding the root of the records using the Xpath address and NTTR
– The usage of Jaro-Winkler distance on Xpath for noise removal

The proposed method HiRE is experimentally tested and found to perform well
in terms of precision, recall, and running time. The HiRE algorithm can also be
extended to work on review pages.

References

1. Buttler, D., Liu, L., Pu, C.: A fully automated object extraction system for the
world wide web. In: 21st International Conference on Distributed Computing Sys-
tems, pp. 361–370. IEEE (2001)

2. Crescenzi, V., Mecca, G., Merialdo, P., et al.: Roadrunner: towards automatic data
extraction from large web sites. VLDB 1, 109–118 (2001)

3. Chang, C.H., Lui, S.C.: Iepad: information extraction based on pattern discov-
ery. In: Proceedings of the 10th International Conference on World Wide Web,
pp. 681–688. ACM (2001)

4. Liu, B., Grossman, R., Zhai, Y.: Mining data records in web pages. In: Proceedings
of the ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 601–606. ACM (2003)

5. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Pro-
ceedings of the 14th International Conference on World Wide Web, pp. 76–85.
ACM (2005)

6. Liu, B., Zhai, Y.: NET – a system for extracting web data from flat and nested data
records. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 487–495. Springer, Heidelberg (2005)

7. Miao, G., Tatemura, J., Hsiung, W.P., Sawires, A., Moser, L.E.: Extracting data
records from the web using tag path clustering. In: Proceedings of the 18th Inter-
national Conference on World Wide Web, pp. 981–990. ACM (2009)

prashant.anantharaman.gr@dartmouth.edu

HiRE - A Heuristic Approach for User Generated Record Extraction 37

8. Song, X., Liu, J., Cao, Y., Lin, C.Y., Hon, H.W.: Automatic extraction of web
data records containing user-generated content. In: Proceedings of the 19th ACM
International Conference on Information and knowledge Management, pp. 39–48.
ACM (2010)

9. Weninger, T., Hsu, W.H.: Text extraction from the web via text-to-tag ratio. In:
19th International Workshop on Database and Expert Systems Application. DEXA
2008, pp. 23–28. IEEE (2008)

10. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage (1990)

11. Chandrakanth, S., Thilagam, P.S.: User generated content extraction from web.
Master’s thesis, National Institute of Technology Karnataka, Surathkal, India
(2012)

prashant.anantharaman.gr@dartmouth.edu

Optimization of Service Rate in a Discrete-Time
Impatient Customer Queue Using Particle

Swarm Optimization

Pikkala Vijaya Laxmi(B) and Kanithi Jyothsna

Department of Applied Mathematics, Andhra University,
Visakhapatnam 530003, India

{vijaya iit2003,mail2jyothsnak}@yahoo.co.in

Abstract. This paper investigates a discrete-time balking, reneging
queue with Bernoulli-schedule vacation interruption. Particle swarm
optimization which is a biologically inspired optimization technique mim-
icking the behavior of birds flocking or fish schooling is implemented to
determine the optimum service rate that minimizes the total expected
cost function per unit time. A potential application of the considered
queueing problem in an inbound email contact center is also presented.

Keywords: Discrete-time · Balking · Reneging · Bernoulli-schedule
vacation interruption · Particle swarm optimization

1 Introduction

In impatient customer queues, customers either decide not to join the queue (i.e.,
balk) or depart after joining the queue without getting service (i.e., renege). In
queueing systems with working vacations (WV), the server is allowed to take
WV whenever the system becomes empty. During WV the server renders service
at a different rate. At the end of a WV , if the queue is non-empty a regular
service period begins; otherwise, another WV commences. A discrete-time WV
queue with balking and reneging has been studied by Goswami [1]. Under the
Bernoulli-schedule vacation interruption (BS−V I), the server may continue the
WV with probability q or interrupt the WV and resume regular service period
with probability 1 − q. An impatient customer queue with BS − V I has been
analyzed by Vijaya Laxmi and Jyothsna [5].

The main objectives of this article are: (i) to derive the steady-state prob-
abilities of a discrete-time queue with balking, reneging and BS − V I, (ii) to
construct a total expected cost function per unit time and use particle swarm
optimization (PSO) to search for the optimum service rate during regular service
period. PSO is an evolutionary computation technique developed by Kennedy
and Eberhart [2] based on the social behavior of animals such as bird flocking,
fish schooling, etc. The main advantages of the algorithm are its simple struc-
ture, ease of implementation, robustness and speed in acquiring solutions. The
complexity of PSO is O(nm), where m being the number of particles and n the
number of iterations. For a detailed algorithm, refer Rao [3].
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 38–42, 2016.
DOI: 10.1007/978-3-319-28034-9 5

prashant.anantharaman.gr@dartmouth.edu

Optimization of Service Rate in a Discrete-Time Impatient Customer Queue 39

2 Model Description and Analysis

We consider a finite buffer discrete-time queue with balking, reneging and BS −
V I under an early arrival system. We assume that the capacity of the system is
N . On arrival, a customer either decides to join the queue with probability bi

or balks with probability b̄i = 1 − bi. Further, we assume that 0 < bi+1 ≤ bi ≤
1, 1 ≤ i ≤ N − 1, b0 = 1 and bN = 0. The waiting time of a customer before
reneging is geometrically distributed with parameter α and the average reneging
rate is given by (i − 1)α, 1 ≤ i ≤ N . The server interrupts the vacation under
the Bernoulli rule. The inter-arrival times, regular service times, service times
during WV and vacation times are geometrically distributed with parameters λ,
μ, η and φ, respectively. The customers are served according to FCFS discipline.

The present queueing model has potential application in an inbound email
contact center where the potential customers transmit emails across the network
through an office automation system such as LAN. An email contact center is a
communication network wherein email sending, preprocessing and processing of
requests are done in discrete slots. The emails received are processed immediately
when the server is idle; otherwise, they are placed in a queue. When the server
is busy, there is a probability that requests may be terminated by users before
arriving at the email server and if an email is not processed within a certain
duration it is lost. To keep the functioning of the email server well and efficient,
maintenance activities (MAs) such as virus scans, disk cleaning, etc., can be
done when the server is idle. During the MAs, the server can still process emails
at a lower speed. After processing an email during the MAs, if there are emails
waiting to be processed, the server may interrupt or continue the MAs with
some probability. On the other hand, when the MAs are completed and emails
are waiting in the queue, they are processed with regular speed. In this scenario,
the requests terminated by users, lost emails, the email server and the MAs
correspond to balking, reneging, server and WV with BS − V I, respectively.

At steady-state, let πi,0(0 ≤ i ≤ N) represent the probability of i customers
in the system and the server in WV and πi,1(1 ≤ i ≤ N) be the probability of
i customers in the system and the server in regular busy period. Based on the
one-step transition analysis, we obtain the following steady-state equations:

π0,0 =
(
λ̄ + λη

)
π0,0 + s1(η)π1,0 + t2(η)π2,0 + s1(μ)π1,1 + t2(μ)π2,1, (1)

πi,0 = φ̄ui(η)πi,0 + φ̄mi−1(η)πi−1,0 + φ̄wi+1(η)πi+1,0 + φ̄fi+2(η)πi+2,0,

1 ≤ i ≤ N − 2, (2)
πN−1,0 = φ̄uN−1(η)πN−1,0 + φ̄mN−2(η)πN−2,0 + φ̄wN (η)πN,0, (3)

πN,0 = φ̄uN (η)πN,0 + φ̄mN−1(η)πN−1,0, (4)
πi,1 = ri(μ)πi,1 + si+1(μ)πi+1,1 + mi−1(μ)πi−1,1 + ti+2(μ)πi+2,1 + φri(η)πi,0

+φmi−1(η)πi−1,0 + φsi+1(η)πi+1,0 + φti+2(η)πi+2,0 + φ̄vi(η)πi,0

+φ̄zi+1(η)πi+1,0 + φ̄gi+2(η)πi+2,0, 1 ≤ i ≤ N − 2, (5)

prashant.anantharaman.gr@dartmouth.edu

40 P.V. Laxmi and K. Jyothsna

πN−1,1 = rN−1(μ)πN−1,1 + sN (μ)πN,1 + mN−2(μ)πN−2,1 + φrN−1(η)πN−1,0

+φmN−2(η)πN−2,0 + φsN (η)πN,0 + φ̄vN−1(η)πN−1,0

+φ̄zN (η)πN,0, (6)
πN,1 = rN (μ)πN,1 + mN−1(μ)πN−1,1 + φrN (η)πN,0 + φmN−1(η)πN−1,0, (7)

where for any x ∈ [0, 1], x̄ = 1 − x,

ui(x) = λ̄x̄(i − 1)α + λb̄ix̄(i − 1)α + λbiqx(i − 1)α + λbix̄(i − 1)α,

i = 1, . . . , N ;
vi(x) = λbiq̄x(i − 1)α, i = 1, . . . , N ; ri(x) = ui(x) + vi(x);
wi(x) = λ̄qx(i − 1)α + λb̄iqx(i − 1)α + λ̄x̄(i − 1)α + λb̄ix̄(i − 1)α

+λbiqx(i − 1)α,

i = 1, . . . , N − 1;
zi(x) = λ̄q̄x(i − 1)α + λb̄iq̄x(i − 1)α + λbiq̄x(i − 1)α, i = 1, . . . , N − 1;
si(x) = wi(x) + zi(x);
fi(x) = λb̄iqx(i − 1)α + λ̄qx(i − 1)α, i = 3, . . . , N ;
gi(x) = λb̄iq̄x(i − 1)α + λ̄q̄x(i − 1)α, i = 3, . . . , N ; ti(x) = fi(x) + gi(x);
m0(η) = λη̄;m0(μ) = 0;mi(x) = λbix̄(i − 1)α, i = 1, . . . , N − 1.

Solving (2) to (7) recursively, the steady-state probabilities are obtained as πi,0 =
ξiπN,0; πi,1 = (kζi + γi)πN,0 where πN,0 = 1/(

∑N
n=0 ξn +

∑N
n=1(kζn + γn));

ξN = 1; ξN−1 =
(
1 − φ̄uN (η)

)
/φ̄mN−1(η); ζN = 1; γN = 0;

ξN−2 =
((

1 − φ̄uN−1(η)
)
ξN−1/φ̄ − wN (η)ξN

)
/mN−2(η);

ξi =
((

1 − φ̄ui+1(η)
)
ξi+1/φ̄ − fi+3(η)ξi+3

−wi+2(η)ξi+2) /mi(η), i = N − 3, ..., 0;
ζN−1 = (1 − rN (μ)) /mN−1(μ);
ζN−2 = ((1 − rN−1(μ)) ζN−1 − sN (μ)) /mN−2(μ);
γN−1 = −φ (mN−1(η)ξN−1 + rN (η)) /mN−1(μ);
γN−2 =

(
(1 − rN−1(μ)) γN−1 − φmN−2(η)ξN−2 − (

φsN (η) + φ̄zN (η)
)

− (
φrN−1(η) + φ̄vN−1(η)

)
ξN−1

)
/mN−2(μ);

ζi = ((1 − ri+1(μ)) ζi+1 − si+2(μ)ζi+2 − ti+3(μ)ζi+3) /mi(μ), i = N − 3, ..., 1;
γi =

(
(1 − ri+1(μ)) γi+1 − si+2(μ)γi+2 − ti+3(μ)γi+3 − φmi(η)ξi

− (
φri+1(η) + φ̄vi+1(η)

)
ξi+1 − (

φsi+2(η) + φ̄zi+2(η)
)
ξi+2

− (
φti+3(η) + φ̄gi+3(η)

)
ξi+3

)
/mi(μ), i = N − 3, ..., 1;

k =
(
s2(μ)γ2 + t3(μ)γ3 + (φr1(η) + φ̄v1(η))ξ1 + φλη̄ξ0 + (φs2(η)

+φ̄z2(η))ξ2 + (φt3(η) + φ̄g3(η))ξ3 − (1 − r1(μ))γ1
)
/ ((1 − r1(μ))ζ1

−s2(μ)ζ2 + t3(μ)ζ3) .

prashant.anantharaman.gr@dartmouth.edu

Optimization of Service Rate in a Discrete-Time Impatient Customer Queue 41

The outside observer’s observation probabilities πo
i,j that the outside observer

finds i customers in the system and server in state j are given by

πo
0,0 = λ̄π0,0; πo

i,0 = (1 − λbi)πi,0 + λbi−1πi−1,0, 1 ≤ i ≤ N ;
πo
1,1 = (1 − λb1)π1,1; πo

i,1 = (1 − λbi)πi,1 + λbi−1πi−1,1, 2 ≤ i ≤ N.

Taking α = 0, q = 1, our results match with those of Vijaya Laxmi et al. [4].

3 Performance Measures and Cost Model

The average system length at an arbitrary epoch (Ls), at an outside observer’s
observation epoch (Lo

s), the probability that the server is in WV (Pwv), in regular
busy period (Pb), the average reneging rate (R.R.), the average balking rate
(B.R.), the average rate of customer loss (L.R.) are given by Ls =

∑N
i=1 i(πi,0 +

πi,1);Lo
s =

∑N
i=1 i(πo

i,0+πo
i,1);Pwv =

∑N
i=0 πi,0;Pb =

∑N
i=1 πi,1;R.R. =

∑N
i=1(i−

1)α(πi,0 + πi,1);B.R. =
∑N

i=1 λb̄i(πi,0 + πi,1);L.R. = B.R. + R.R.
We develop a total expected cost function with an objective to determine

the optimum regular service rate (μ∗). Let the total expected cost function per
unit time be F (μ) = Cμμ + Cηη + ClsL

o
s + Clr L.R, where Cμ, Cη, Cls and

Clr are the costs per unit time during regular busy period, during WV , when a
customer joins the queue and when a customer balks or reneges, respectively. We
employ PSO coded in Mathematica to solve the optimization problem. Table 1
presents the optimum values of μ, the minimum expected cost F (μ∗), along with
the corresponding performance measures L∗

s, L
o∗
s , P ∗

wv, P ∗
b and L.R.∗ for various

values of η and α. For obtaining the numerical results, we have arbitrarily chosen
the following parameters: N = 10, b0 = 1, bi = 1−(i/N2), 1 ≤ i ≤ N −1, bN = 0,
λ = 0.4, μ = 0.6, φ = 0.2, q = 0.4, Cls = 45, Cμ = 40, Cη = 25 and Clr = 15.
From the table, we observe that except P ∗

b and L.R.∗ all other optimum values
decrease with the increase of α for fixed η. Further, for fixed α, μ∗ and P ∗

wv

increase with the increase of η whereas other optimum values decrease with η.

Table 1. Optimum values for various values of η and α using PSO

η = 0.1 η = 0.3

α → 0.05 0.07 0.1 0.05 0.07 0.1

μ∗ 0.77157 0.74010 0.69875 0.77816 0.75500 0.72274

F (μ∗) 115.069 112.442 109.106 97.8809 96.6992 95.1007

L∗
s 1.40803 1.37378 1.33126 0.91357 0.90582 0.89606

Lo∗
s 1.80238 1.76828 1.72593 1.30991 1.30220 1.29248

P ∗
wv 0.58795 0.58511 0.58154 0.67398 0.67135 0.66761

P ∗
b 0.41205 0.41489 0.41846 0.32603 0.32865 0.33239

L.R.∗ 0.03994 0.05101 0.06594 0.02057 0.02667 0.03532

prashant.anantharaman.gr@dartmouth.edu

42 P.V. Laxmi and K. Jyothsna

References

1. Goswami, V.: A discrete-time queue with balking, reneging and working vacations.
Int. J. Stoch. Anal. 2014, 8 p. (2014). Article ID 358529, http://dx.doi.org/10.
1155/2014/358529

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Canberra, Australia, vol. 4, pp. 1942–1948 (1995)

3. Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, New Jersey
(2009)

4. Vijaya Laxmi, P., Goswami, V., Jyothsna, K.: Analysis of discrete-time single server
queue with balking and multiple working vacations. Qual. Tech. Quan. Manage.
Int. J. 10(4), 443–456 (2013)

5. Vijaya Laxmi, P., Jyothsna, K.: Impatient customer queue with Bernoulli schedule
vacation interruption. Comput. Oper. Res. 56, 1–7 (2015)

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1155/2014/358529
http://dx.doi.org/10.1155/2014/358529

A Wait-Free Stack

Seep Goel, Pooja Aggarwal, and Smruti R. Sarangi(B)

Indian Institute of Technology, New Delhi, India
seep.goyal@gmail.com, {pooja.aggarwal,srsarangi}@cse.iitd.ac.in

Abstract. In this paper, we describe a novel algorithm to create a con-
current wait-free stack. To the best of our knowledge, this is the first
wait-free algorithm for a general purpose stack. In the past, researchers
have proposed restricted wait-free implementations of stacks, lock-free
implementations, and efficient universal constructions that can support
wait-free stacks. The crux of our wait-free implementation is a fast pop
operation that does not modify the stack top; instead, it walks down
the stack till it finds a node that is unmarked. It marks it but does not
delete it. Subsequently, it is lazily deleted by a cleanup operation. This
operation keeps the size of the stack in check by not allowing the size of
the stack to increase beyond a factor of W as compared to the actual
size. All our operations are wait-free and linearizable.

1 Introduction

In this paper, we describe an algorithm to create a wait-free stack. A concurrent
data structure is said to be wait-free if each operation is guaranteed to complete
within a finite number of steps. In comparison, the data structure is said to
be lock-free if at any point of time, at least one operation is guaranteed to
complete in a finite number of steps. Wait-free stacks have not received a lot of
attention in the past, and we are not aware of algorithms that are particularly
tailored to creating a generalized wait-free stack. However, approaches have been
proposed to create wait-free stacks with certain restrictions [1,3,7,8], and with
universal constructions [4,10]. The main reason that it has been difficult to create
a wait-free stack is because there is a lot of contention at the stack top between
concurrent push and pop operations. It has thus been hitherto difficult to realize
the gains of additional parallelism, and also guarantee completion in a finite
amount of time.

The crux of our algorithm is as follows. We implement a stack as a linked
list, where the top pointer points to the stack top. Each push operation adds
an element to the linked list, and updates the top pointer. Both of these steps
are done atomically, and the overall operation is linearizable (appears to execute
instantaneously). However, the pop operation does not update the top pointer.
This design decision has been made to enable more parallelism, and reduce the
time per operation. It instead scans the list starting from the top pointer till it
reaches an unmarked node. Once, it reaches an unmarked node, it marks it and
returns the node as the result of the pop operation. Over time, more and more
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 43–55, 2016.
DOI: 10.1007/978-3-319-28034-9 6

prashant.anantharaman.gr@dartmouth.edu

44 S. Goel et al.

nodes get marked in the stack. To garbage collect such nodes we implement a
cleanup operation that can be invoked by both the push and pop operations.
The cleanup operation removes a sequence of W consecutively marked nodes
from the list. In our algorithm, we guarantee that at no point of time the size of
the list is more than W times the size of the stack (number of pushes - pops).
This property ensures that pop operations complete within a finite amount of
time. Here, W is a user defined parameter and it needs to be set to an optimal
value to ensure the best possible performance.

The novel feature of our algorithm is the cleanup operation that always keeps
the size of the stack within limits. The other novel feature is that concurrent
pop and push operations do not cross each others’ paths. Moreover, all the pop
operations can take place concurrently. This allows us to have a linearizable
operation. In this paper, we present our basic algorithm along with proofs of
important results. Readers can find the rest of the pseudo code, asymptotic time
complexities, and proofs in the full paper posted on Arxiv [5].

2 Related Work

In 1986, Treiber [14] proposed the first lock-free linked list based implementation
of a concurrent stack. In his implementation, both the push and pop operations
modified the top pointer using CAS instructions. Subsequently, Shavit et al. [13]
and Hendler et al. [6] designed a linearizable concurrent stack using the concept
of software combining. Here, they group concurrent operations, and operate on
the entire group. In 2004, Hendler et al. [9] proposed a highly scalable lock-free
stack using an array of lock-free exchangers known as an elimination array. If
a pop operation is paired with a push operation, then the baseline data struc-
ture need not be accessed. This greatly enhances the amount of available paral-
lelism. This technique can be incorporated in our design as well. Subsequently,
Bar-Nissan et al. [2] have augmented this proposal with software combining
based approaches.

The restricted wait-free algorithms for the stack data structure proposed so
far by the researchers are summarized in Table 1. The wait-free stack proposed
in [1] employs a semi-infinite array as its underlying data structure. A push oper-
ation obtains a unique index in the array (using getAndIncrement()) and writes
its value to that index. A pop operation starts from the top of the stack, and
traverses the stack towards the bottom. It marks and returns the first unmarked
node that we find. Our pop operation is inspired by this algorithm. Due to its
unrestricted stack size, this algorithm is not practical.

David et al. [3] proposed another class of restricted stack implementations.
Their implementation can support a maximum of two concurrent push operations.
Kutten et al. [7,8] suggest an approach where a wait-free shared counter can be
adapted to create wait-free stacks. However, their algorithm requires the DCAS
(double CAS) primitive, which is not supported in contemporary hardware.

Wait-free universal constructions are generic algorithms that can be used
to create linearizable implementations of any object that has valid sequential

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 45

Table 1. Summary of existing restricted wait-free stack algorithms

Author Primitives Remarks

Herlihy 1991 [10] CAS 1. Copies every global update to the private
copy of every thread

2. Replicates the stack data structure N
times (N → # threads)

Afek et al. [1] 2006] F&A, TAS 1. Requires a semi-infinite array
(impractical)

2. Unbounded stack size

Hendler et al. [7] 2006] DCAS 1. DCAS not supported in modern hardware

2. Variation of an implementation of a
shared counter

Fatourou et al. [4] 2011] LL/SC, F&A 1. Copies every global update to the private
copy of every thread

2. Relies on wait-free implementation of
F&A in hardware

David et al. 2011 [3] BH object 1. Supports at the most two concurrent pop
operations

CAS → compare-and-set, TAS → test-and-set, LL/SC → load linked-store condi-
tional
DCAS → double location CAS, F&A → fetch-and-add, BH Object (custom
object [3])

semantics. The inherent drawback of these approaches is that they typically
have high time and space overheads (create local copies of the entire (or partial)
data structure). For example, a recent proposal by Fatourou et al. [4] can be
used to implement stacks and queues. The approach derives its performance
improvement over the widely accepted universal construction of Herlihy [10] by
optimizing on the number of shared memory accesses.

3 The Algorithm

3.1 Basic Data Structures

Algorithm 1 shows the Node class, which represents a node in a stack. It has a
value, and pointers to the next (nextDone) and previous nodes (prev) respec-
tively. Note that our stack is not a doubly linked list, the next pointer nextDone
is only used for reaching consensus on which node will be added next in the stack.

To support pop operations, every node has a mark field. The pushT id field
contains the id of the thread that created the request. The index field and
counter are atomic integers and are used to clean up the stack. Initially, the list
contains only the sentinel node, which is a dummy node.

prashant.anantharaman.gr@dartmouth.edu

46 S. Goel et al.

Algorithm 1. The Node Class
1 class Node

2 int value

3 AtomicMarkableReference < Node > nextDone

4 AtomicReference < Node > prev

5 AtomicBoolean mark

6 int pushTid

7 AtomicInteger index

8 AtomicInteger counter /* initially set to 0 */

3.2 High Level Overview

The push operation starts by choosing a phase number (in a monotonically
increasing manner), which is greater than the phase numbers of all the existing
push operations in the system. This phase number along with a reference to the
node to be pushed and a flag indicating the status of the push operation are
saved in the announce array in an atomic step. After this, the thread ti scans
the announce array and finds out the thread tj , which has a push request with
the least phase number. Note that, the thread tj found out by ti in the last step
might be ti itself. Next, ti helps tj in completing tj ’s operation. At this point of
time, some threads other than ti might also be trying to help tj , and therefore,
we must ensure that tj ’s operation is applied exactly once. This is ensured by
mandating that for the completion of any push request, the following steps must
be performed in the exact specified order:

1. Modify the state of the stack in such a manner that all the other push requests
in the system must come to know that a push request pi is in progress and
additionally they should be able to figure out the details required by them to
help pi.

2. Update the pushed flag to true in pi’s entry in the announce array.
3. Update the top pointer to point to the newly pushed node.

The pop operation has been designed in such a manner that it does not update
the top pointer. This decision has the dual benefit of eliminating the contention
between concurrent push and pop operations, as well as enabling the parallel
execution of multiple pop operations. The pop operation starts by scanning the
linked list starting from the stack’s top till it reaches an unmarked node. Once,
it gets an unmarked node, it marks it and returns the node as a result of the
pop operation. Note that there is no helping in the case of a pop operation and
therefore, we do not need to worry about a pop operation being executed twice.
Over time, more and more nodes get marked in the stack. To garbage collect
such nodes we implement a clean operation that can be invoked by both the
push and pop operations.

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 47

3.3 The Push Operation

The first step in pushing a node is to create an instance of the PushOp class.
It contains the reference to a Node (node), a Boolean variable pushed that
indicates the status of the request, and a phase number (phase) to indicate the
age of the request. Let us now consider the push method (Line 14). We first
get the phase number by atomically incrementing a global counter. Once the
PushOp is created and its phase is initialized, it is saved in the announce array.
Subsequently, we call the function help to actually execute the push request.

The help function (Line 19) finds the request with the least phase number
that has not been pushed yet. If there is no such request, then it returns. Oth-
erwise it helps that request (minReq) to complete by calling the attachNode
method. After helping minReq, we check if the request that was helped is
the same as the request that was passed as an argument to the help function
(request) in Line 19. If they are different requests, then we call attachNode
for the request request in Line 26. This is a standard construction to make a
lock-free method wait-free (refer to [11]).

In the attachNode function, we first read the value of the top pointer, and
its next field. If these fields have not changed between Lines 31 and 32, then we
try to find the status of the request in Line 34. Note that we check that next is
equal to null, and mark is equal to false in the previous line (Line 33). The mark
field is made true after the top pointer has been updated. Hence, in Line 33, if
we find it to be true then we need to abort the current iteration and read the
top pointer again.

After, we read the status of the request, and find that it has not completed,
we proceed to update the next field of the stack top in Line 36 using a compare-
And-Set (CAS) instruction. The aim is to change the pointer in the next field
from null to the node the push request needs to add. If we are successful, then we
update the top pointer by calling the function, updateTop. After the top pointer
has been updated, we do not really need the next field for subsequent push
requests. However, concurrent requests need to see that last.nextDone has been
updated. The additional compulsion to delete the contents of the pointer in the
next field is that it is possible to have references to deleted nodes via the next
field. The garbage collector in this case will not be able to remove the deleted
nodes. Thus, after updating the top pointer, we set the next field’s pointer to
null, and set the mark to true. If a concurrent request reads the mark to be
true, then it can be sure, that the top pointer has been updated, and it needs to
read it again.

If the CAS instruction fails, then it means that another concurrent request
has successfully performed a CAS operation. However, it might not have updated
the top pointer. It is thus necessary to call the updateTop function to help the
request complete.

The updateTop method is shown in Algorithm 3. We read the top pointer, and
the next pointer. If next is non-null, then the request has not fully completed.
After having checked the value of the top pointer, and the value of the next
field, we proceed to connect the newly attached node to the stack by updating

prashant.anantharaman.gr@dartmouth.edu

48 S. Goel et al.

Algorithm 2. The Push Method
9 class PushOp

10 long phase

11 boolean pushed

12 Node node

13 AtomicReferenceArray < PushOp > announce

14 push(tid, value)

15 phase ← globalPhase.getAndIncrement()

16 request ← new PushOp(phase,false,new Node(value,tid))

17 announce[tid] ← request

18 help(request)

19 help(request)

20 (minTid, minReq) ← minreq.phase { (i, req) | 0 ≤ i < N , req = announce[i], !req.pushed }
21 if (minReq == null) || (minReq.phase > request.phase) then
22 return

23 end

24 attachNode(minReq)

25 if minReq �= request then
26 attachNode(request)

27 end

28 attachNode(request)

29 while !request.pushed do
30 last ← top.get()

31 (next, done) ← last.nextDone.get()

32 if last == top.get() then
33 if next == null &&done = false then
34 if !request.pushed then
35 myNode ← request.node

36 res ← last.nextDone.compareAndSet((null,false), (myNode, false))

37 if res then
38 updateTop()

39 last.nextDone.compareAndSet ((myNode, false), (null,true))

40 return

41 end

42 end

43 end

44 updateTop()

45 end

46 end

its prev pointer. We set the value of its prev pointer in Line 54. Every node
in the stack has an index that is assigned in a monotonically increasing order.
Hence, in Line 55, we set the index of next to 1 plus the index of last. Next, we
set the pushed field of the request equal to true. The point of linearizability is
Line 57, where we update the top pointer to point to next instead of last.

We have a cleanup mechanism that is invoked once the index of a node
becomes a multiple of a constant, W . We invoke the tryCleanUp method in
Line 60. It is necessary that the tryCleanUp() method be called by only one
thread. Hence, the thread that successfully performed a CAS on the top pointer
calls the tryCleanUp method if the index is a multiple of W .

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 49

Algorithm 3. The updateTop method
47 updateTop()

48 last ← top.get()

49 (next, mark) ← last.nextDone.get()

50 if next �= null then
51 request ← announce.get(next.pushTid)

52 if last == top.get() &&request.node == next then
53 /* Add the request to the stack and update the top pointer */

54 next.prev.compareAndSet(null, last)

55 next.index ← last.index +1

56 request.pushed ← true

57 stat ← top.compareAndSet(last, next)

58 /* Check if any cleaning up has to be done */

59 if next.index % W == 0 &&stat == true then
60 tryCleanUp(next)

61 end

62 end

63 end

3.4 The Pop Operation

Algorithm 4 shows the code for the pop method. We read the value of the top
pointer and save it in the local variable, myTop. This is the only instance in this
function, where we read the value of the top pointer. Then, we walk back towards
the sentinel node by following the prev pointers (Lines 67 – 73). We stop when
we are successfully able to set the mark of a node that is unmarked. This node
is logically “popped” at this instant of time. If we are not able to find any such
node, and we reach the sentinel node, then we throw an EmptyStackException.

Algorithm 4. The Pop Method
64 pop()

65 mytop ← top.get()

66 curr ← mytop

67 while curr �= sentinel do
68 mark ← curr.mark.getAndSet(true)

69 if !mark then
70 break

71 end

72 curr ← curr.prev

73 end

74 if curr == sentinel then
75 /* Reached the end of the stack */

76 throw new EmptyStackException()

77 end

78 /* Try to clean up parts of the stack */

79 tryCleanUp(curr)

80 return curr

prashant.anantharaman.gr@dartmouth.edu

50 S. Goel et al.

After logically marking a node as popped, it is time to physically delete it.
We thus call the tryCleanUp method in Line 79. The pop method returns the
node that it had successfully marked.

3.5 The CleanUp Operation

The aim of the clean method is to clean a set of W contiguous entries in the list
(indexed by the prev pointers). Let us start by defining some terminology. Let
us define a range of W contiguous entries, which has four distinguished nodes
as shown in Fig. 1.

A range starts with a node termed the base, whose index is a multiple of
W . Let us now define target as base.prev. The node at the end of a range is
leftNode. Its index is equal to base.index + W − 1. Let us now define a node
rightNode such that rightNode.prev = leftNode. Note that for a given range,
the base and leftNode nodes are fixed, whereas the target and rightNode nodes
keep changing. rightNode is the base of another range, and its index is a multiple
of W .

The push and pop methods call the function tryCleanUp. The push method
calls it when it pushes a node whose index is a multiple of W . This is a valid
rightNode. It walks back and increments the counter of the base node of the
previous range. We ensure that only one thread (out of all the helpers) does
this in Line 59. Similarly, in the pop function, whenever we mark a node, we call
the tryCleanUp function. Since the pop function does not have any helpers, only
one thread per node calls the tryCleanUp function. Now, inside the tryCleanUp
function, we increment the counter of the base node. Once, a thread increments
it to W + 1, it invokes the clean function. Since only one thread will increment
the counter to W +1, only one thread will invoke the clean function for a range.

Fig. 1. A range of W entries

The functionality of the clean function is very similar to the push function.
Here, we first create a DeleteRequest that has four fields: phase (similar to phase
in PushOp), threadId, pending (whether the delete has been finished or not),
and the value of the base node. Akin to the push function, we add the newly cre-
ated DeleteRequest to a global array of DeleteRequests. Subsequently, we find
the pending request with the minimum phase in the array allDeleteRequests.

Note that at this stage it is possible for multiple threads to read the same
value of the request with the minimum phase number. It is also possible for
different sets of threads to have found different requests to have the minimum

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 51

Algorithm 5. The tryCleanUp method
81 tryCleanUp(myNode)

82 temp ← myNode.prev

83 while temp �= sentinel do
84 if temp.index() % W == 0 then
85 if temp.counter.incrementAndGet == W + 1 then
86 clean(getTid(), temp)

87 end

88 break

89 end

90 temp ← temp.prev()

91 end

phase. For example, if a request with phase 2 (R2) got added to the array before
the request with phase 1 (R1), then a set of threads might be trying to complete
R2, and another set might be trying to complete R1. To ensure that our stack
remains in a consistent state, we want that only one set goes to the next stage.

To achieve this, we adopt a strategy similar to the one adopted in the function
attachNode. Interested readers can refer to the full paper at [5] for a detailed
explanation of how this is done. Beyond this point, all the threads will be working
on the same DeleteRequest which we term as uniqueRequest. They will then
move on to call the helpF inishDelete function that will actually finish the delete
request.

Let us describe the helpF inishDelete function in Algorithm6. We first read
the current request from the atomic variable, uniqueRequest in Line 93. If the
request is not pending, then some other helper has completed the request, and
we can return from the function. However, if this is not the case, then we need
to complete the delete operation. Our aim now is to find the target, leftNode,
and rightNode. We search for these nodes starting from the stack top.

The index of the leftNode is equal to the index of the node in the cur-
rent request (currRequest) + W − 1. endIdx is set to this value in Line 97.
Subsequently, in Lines 101–106, we start from the top of the stack, and keep
traversing the prev pointers till the index of leftNode is equal to endIdx. Once,
the equality condition is satisfied, Lines 101 and 102 give us the pointers to the
rightNode and leftNode respectively. If we are not able to find the leftNode,
then it means that another helper has successfully deleted the nodes. We can
thus return.

The next task is to find the target. The target is W hops away from the
leftNode. Lines 108–111 run a loop W times to find the target. Note that we
shall never have any issues with null pointers because sentinel.prev is set to
sentinel itself. Once, we have found the target, we need to perform a CAS
operation on the prev pointer of the rightNode. We accomplish this in Line 112.
If the prev pointer of rightNode is equal to leftNode, then we set it to target.
This operation removes W entries (from leftNode to base) from the list. The last
step is to set the status of the pending field in the current request (currRequest)
to false (see Line 113).

prashant.anantharaman.gr@dartmouth.edu

52 S. Goel et al.

Algorithm 6. The helpF inishDelete method
92 helpFinishDelete()

93 currRequest ← uniqueRequest.get()

94 if !currRequest.pending then
95 return

96 end

97 endIdx ← currRequest.node.index + W − 1

98 rightNode ← top.get() /* Search for the request from the top */

99 leftNode ← rightNode.prev

100 while leftNode.index �= endIdx && leftNode �= sentinel do
101 rightNode ← leftNode

102 leftNode ← leftNode.prev

103 end

104 if leftNode = sentinel then
105 return /* some other thread deleted the nodes */

106 end

107 /* Find the target node */

108 target ← leftNode

109 for i=0; i < W ; i++ do
110 target ← target.prev

111 end

112 rightNode.prev.compareAndSet(leftNode, target) /* Perform the CAS operation and
delete the nodes */

113 currRequest.pending ← false /* Set the status of the delete request to not pending*/

4 Proof of Correctness

The most popular correctness criteria for a concurrent shared object is lineariz-
ability [12]. Linearizability ensures that within the execution interval of every
operation there is a point, called the linearization point, where the operation
seems to take effect instantaneously and the effect of all the operations on the
object is consistent with the object’s sequential specification. By the property of
compositional linearizability, if each method of an object is linearizable we can
conclude that the complete object is linearizable. Thus, if we identify the point
of linearization for both the push and the pop method in our implementation,
we can say that our implementation is linearizable and thus establish its cor-
rectness. In our full paper at [5], we show that our implementation is legal and
push and pop operations complete in a bounded number of steps.

Theorem 1. The push and pop operations are linearizable.

Proof. Let us start out by defining the notion of “pass points”. The pass point of
a push operation is when it successfully updates the top pointer in the function
updateTop (Line 57). The pass point of the pop operation, is when it successfully
marks a node, or when it throws the EmtpyStackException. Let us now try to
prove by mathematical induction on the number of requests that it is always
possible to construct a linearizable execution that is equivalent to a given execu-
tion. In a linearizable execution all the operations are arranged in a sequential
order, and if request ri precedes rj in the original execution, then ri precedes rj
in the linearizable execution as well.

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 53

Base Case: Let us consider an execution with only one pass point. Since the
execution is complete, we can conclude that there was only one request in the sys-
tem. An equivalent linearizable execution will have a single request. The outcome
of the request will be an EmptyStackException if it is a pop request, otherwise it
will push a node to the stack. Our algorithm will do exactly the same in the pop
and attachNode methods respectively. Hence, the executions are equivalent.

Induction Hypothesis: Let us assume that all executions with n requests are
equivalent to linearizable executions.

Inductive Step: Let us now prove our hypothesis for executions with n + 1
requests. Let us arrange all the requests in an ascending order of the execution
times of their pass points. Let us consider the last ((n + 1)th) request just after
the pass point of the nth request. Let the last request be a push. If the nth

request is also a push, then the last request will use the top pointer updated
by the nth request. Additionally, in this case the nth request will not see any
changes made by the last request. It will update last.next and the top pointer,
before the last request updates them. In a similar manner we can prove that
no prior push request will see the last request. Let us now consider a prior
pop request. A pop request scans all the nodes between the top pointer and the
sentinel. None of the pop requests will see the updated top pointer by the last
request because their pass points are before this event. Thus, they have no way
of knowing about the existence of the last request. Since the execution of the
first n requests is linearizable, an execution with the (n + 1)th push request is
also linearizable because it takes effect at the end (and will appear last in the
equivalent sequential order).

Let us now consider the last request to be a pop operation. A pop operation
writes to any shared location only after its pass point. Before its pass point, it
does not do any writes, and thus all other requests are oblivious of it. Thus,
we can remove the last request, and the responses of the first n requests will
remain the same. Let us now consider an execution fragment consisting of the
first n requests. It is equivalent to a linearizable execution, E . This execution is
independent of the (n + 1)th request.

Now, let us try to create a linearizable execution, E ′, which has an event
corresponding to the last request. Since the linearizable execution is sequential,
let us represent the request and response of the last pop operation by a single
event, R. Let us try to modify E to create E ′. Let the sequential execution
corresponding to E be S.

Now, it is possible that R could have read the top pointer long ago, and is
somewhere in the middle of the stack. In this case, we cannot assume that R is the
last request to execute in the equivalent linearizable execution. Let the state of
the stack before the pop reads the top pointer be S ′. The state S ′ is independent
of the pop request. Also note that, all the operations that have arrived after the
pop operation have read the top pointer, and overlap with the pop operation.
The basic rule of linearizability states that, if any operation Ri precedes Rj

prashant.anantharaman.gr@dartmouth.edu

54 S. Goel et al.

then Ri should precede Rj in the equivalent sequential execution also. Whereas,
in case the two operations overlap with each other, then their relative order is
undefined and any ordering of these operations is a valid ordering [11].

In this case, we have two possibilities: (I) R returns the node that it had read
as the top pointer as an output of its pop operation, or (II) it returns some other
node.

Case I: In this case, we can consider the point at which R reads the top pointer
as the point at which it is linearized. R in this case reads the stack top, and
pops it.

Case II: In this case, some other request, which is concurrent must have popped
the node that R read as the top pointer. Let R return node Ni as its return
value. This node must be between the top pointer that it had read (node Ntop),
and the beginning of the stack. Moreover, while traversing the stack from Ntop

to Ni, R must have found all the nodes in the way to be marked. At the end it
must have found Ni to be unmarked, or would have found Ni to be the end of
the stack (returns exception).

Let us consider the journey for R from Ntop to Ni. Let Nj be the last node
before Ni that has been marked by a concurrent request, Rj . We claim that if R
is linearized right after Rj , and the rest of the sequences of events in E remain
the same, we have a linearizable execution (E ′).

Let us consider request Rj and its position in the sequential execution, S. At
its point of linearization, it reads the top of the stack and returns it (according
to S). This node Nj is the successor of Ni. At that point Ni becomes the top
of the stack. At this position, if we insert R into S, then it will read and return
Ni as the stack top, which is the correct value. Subsequently, we can insert the
remaining events in S into the sequential execution. They will still return the
same set of values because they are unaffected by R as proved before.

This proof can be trivially extended to take cleanup operations into account.

5 Conclusion

The crux of our algorithm is the clean routine, which ensures that the size of
the stack never grows beyond a predefined factor, W . This feature allows for a
very fast pop operation, where we need to find the first entry from the top of the
stack that is not marked. This optimization also allows for an increased amount
of parallelism, and also decreases write-contention on the top pointer because
it is not updated by pop operations. As a result, the time per pop operation is
very low. The push operation is also designed to be very fast. It simply needs to
update the top pointer to point to the new data. To provide wait-free guarantees
it was necessary to design a clean function that is slow. Fortunately, it is not
invoked for an average of W − 1 out of W invocations of push and pop. We can
tune the frequency of the clean operation by varying the parameter, W (to be
decided on the basis of the workload).

prashant.anantharaman.gr@dartmouth.edu

A Wait-Free Stack 55

References

1. Afek, Y., Gafni, E., Morrison, A.: Common2 extended to stacks and unbounded
concurrency. Distrib. Comput. 20(4), 239–252 (2007)

2. Bar-Nissan, G., Hendler, D., Suissa, A.: A dynamic elimination-combining stack
algorithm. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS,
vol. 7109, pp. 544–561. Springer, Heidelberg (2011)

3. David, M., Brodsky, A., Fich, F.E.: Restricted stack implementations. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 137–151. Springer, Heidelberg
(2005)

4. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.
In: SPAA 2011, pp. 325–334. ACM (2011)

5. Goel, S., Aggarwal, P., Sarangi, S.: full paper: “a wait-free stack”. http://arxiv.org/
abs/1510.00116

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pp. 355–364. ACM (2010)

7. Hendler, D., Kutten, S.: Constructing shared objects that are both robust and
high-throughput. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 428–442.
Springer, Heidelberg (2006)

8. Hendler, D., Kutten, S., Michalak, E.: An adaptive technique for constructing
robust and high-throughput shared objects-technical report (2010)

9. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004, pp. 206–215. ACM (2004)

10. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier,
Burlington (2012)

12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Shavit, N., Zemach, A.: Combining funnels: a dynamic approach to software com-
bining. J. Parallel Distrib. Comput. 60(11), 1355–1387 (2000)

14. Treiber, R.K.: Systems programming: coping with parallelism. Thomas J. Watson
Research Center, International Business Machines Incorporated (1986)

prashant.anantharaman.gr@dartmouth.edu

http://arxiv.org/abs/1510.00116
http://arxiv.org/abs/1510.00116

Influential Degree Heuristic for RankedReplace
Algorithm in Social Networks

Jatharakonda Mallesham(B) and S. Durga Bhavani

School of Computer and Information Sciences, University of Hyderabad,
Hyderabad, India

mallesh537@gmail.com, sdbcs@uohyd.ernet.in

Abstract. Influence maximization is to identify a subset of nodes at
which if the information is released, the information spread can be max-
imized. Faisan and Bhavani [7] proposed incorporating greedy selection
in the initialization step of RankedReplace algorithm of Charu Aggarwal
et al. which would speed up the algorithm. We propose to improve this
algorithm further by considering novel heuristic called influential degree
for selection of the initial set. The experiments are carried out on small
as well as large data sets like DBLP and the results show that RRID
and its variations perform quite well on all the data sets quite efficiently
reducing the time taken and retaining, and in a few cases, obtaining much
better influence spread than the original RankedReplace algorithm.

1 Introduction

Social networks are represented as graphs in which vertices represent individuals
and edges denote interactions or relationships among actors. Some of the chal-
lenging problems in social networks relate to information about finding groups
that are collaborating together(community discovery) [8], discovering potential
new collaborations (link prediction) [12], finding important nodes (influential
nodes) [10] and to find good target nodes in the context of marketing [6].

1.1 Problem Definition

Let π(i) be the probability that node i contains the information.
Given a social network graph, integer k and information flow model, the

problem is to find a set S of k nodes at which information will be released such
that it maximizes the aggregate probability of information assimilation over all
nodes in the graph.

S∗
k = argmax{S⊂V,|S|=k}

∑

i∈V
π(i)

2 Related Work

Domingos and Richardson [6] introduced influence maximization problem in
marketing context. Kempe et al. [9] proved that the problem of influence
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 56–60, 2016.
DOI: 10.1007/978-3-319-28034-9 7

prashant.anantharaman.gr@dartmouth.edu

Influential Degree Heuristic for RankedReplace Algorithm 57

maximization is NP-Hard. Leskovec et al. [11] applied this problem to place-
ment of sensors in a water distribution network and for the problem of choosing
an informative blog. Chen [4,5] proposed two greedy algorithms, one that uses
degree discount heuristic to reduce time complexity. Narayanam et al. [13] used
shapely value as a greedy heuristic to ranks the nodes.

Charu Aggarwal et al. [3] proposed a new model, namely flow authority
model, in which they propose two novel algorithms namely steady state spread
(SSS) algorithm and RankedReplace (RR) algorithm for flow authority model
(FAM). Steady state spread algorithm calculates aggregate spread for a given
set of nodes.

3 Proposed Approach: Modified RankedReplace
Algorithm

In the proposed modification to RankedReplace algorithm, in the initialization
step, the top k nodes ranked by the influential degree heuristic are stored in
the set S in ascending order and remaining nodes are ordered in the descending
order of influential degree in R. Now the first node in S is replaced with the top
node from R and checked if the total spread increases with the change. If yes, the
node will be replaced. The algorithm is repeated until r consecutive unsuccessful
replacement attempts. The algorithm returns the final S as the top k influential
nodes.

3.1 Influential Degree (ID) and Influential Degree Discount (IDD)
Heuristics

For each node, consider the number of edges (directed outward) whose weight
is greater than or equal to a predefined threshold value θ. We set the threshold
θ on weights of edges so that X % of total edges of the graph can be considered
for degree calculation. This count called as influential degree (ID) is a kind of
modified out-degree based on weight. And in the process of calculating degree
of a node, say u is a neighbor of v, if v has been selected in degree calculation of
u, that is, edge (u, v) has been considered once then the same edge is disabled
and cannot be considered as (v, u) for degree of v.

4 Experimentation and Results

The modified RankedReplace algorithm is carried out with six different heuris-
tics: two standard heuristics: MaxDegree, DegreeDiscount; and the proposed
heuristics of Influential Degree (ID) and InfluentialDegree Discount (IDD) each
with two different thresholds θ1 and θ2; and of course compared with the regular
RankedReplace algorithm. Hence seven experimental settings are carried out. It
is to be noted that the experimentation reported by Faisan and Bhavani [7] is
limited to small data sets.

prashant.anantharaman.gr@dartmouth.edu

58 J. Mallesham and S. Durga Bhavani

4.1 Data Sets

For analysis purpose we considered three collaboration graphs: Astrophyics,
condmat2003 (medium) and DBLP. In order to apply FAM model to collab-
oration graphs, weights have been normalized w.r.t the maximum number of
contributions between any two authors. We consider two threshold values for
influential degree θ1 and θ2 and the details are given in Table 1.

Table 1. Data sets

Data Set # of Nodes # of Edges θ1 (33 % Edges) θ2 (50 % Edges)

Astrophysics [1] 16046 121251 0.0142 0.00758

Condmat2003 [1] 27519 116181 0.014 0.007

DBLP [2] 684911 2284991 0.0005 -

0 20 40 60 80 100

0

200

400

Set size

R
ep

la
ce

m
en

ts
fo

r
A

st
ro

p
h
y
si

cs

RR

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

RRID(θ2)

RRIDD(θ2)

Fig. 1. Replacement analysis for Astro-
physics

0 20 40 60 80 100

0

100

200

Set size

R
ep

la
ce

m
en

ts
fo

r
C

o
n
d
m

a
t2

0
0
3

RR

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

RRID(θ2)

RRIDD(θ2)

Fig. 2. Replacement analysis for cond-
mat2003

0 10 20 30 40 50

0

50

100

Set size

R
ep

la
ce

m
en

ts
fo

r
D

B
L
P

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

Fig. 3. Replacement analysis for DBLP

0 20 40 60 80 100

400

500

600

Set size

S
p
re

a
d

fo
r

A
st

ro
p
h
y
si

cs RR

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

RRID(θ2)

RRIDD(θ2)

Fig. 4. Spread analysis for Astrophysics
data set.

prashant.anantharaman.gr@dartmouth.edu

Influential Degree Heuristic for RankedReplace Algorithm 59

0 20 40 60 80 100
0

100

200

Set size

S
p
re

a
d

fo
r

co
n
d
m

a
t2

0
0
3

RR

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

RRID(θ2)

RRIDD(θ2)

Fig. 5. Spread analysis for Condmat2003
data set.

0 10 20 30 40 50
0

100

200

Set size

S
p
re

a
d

fo
r

D
B

L
P

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

0 10 20 30 40 50
0

100

200

Set size

S
p
re

a
d

fo
r

D
B

L
P

RRMD

RRDD

RRID(θ1)

RRIDD(θ1)

Fig. 6. Spread analysis for DBLP data set.

5 Conclusion

The initial step of RankReplace algorithm of Charu Aggarwal et al. is modified
by incorporating the proposed influential degree heuristics. These algorithms
are implemented on medium and large data sets, namely Condmat2003, Astro-
physics and DBLP respectively. It can be seen in Figs. 1, 2, 3, 4, 5 and 6 that
heuristics based on RRID and RRIDD yield low number of replacements and
obtain high total spread or at least values on par with RR. In all the cases
the influential degree heuristic algorithms are performing much better than the
standard heuristics.

References

1. http://www-personal.umich.edu/∼mejn/netdata/
2. http://people.inf.ethz.ch/khana/dataset.html
3. Aggarwal, C.C., Khan, A., Yan, X.: On flow authority discovery in social networks.

In: Proceedings of the Eleventh SIAM International Conference on Data Mining,
SDM, pp. 522–533 (2011)

4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large scale social networks. In: Proceedings of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM Press
(2010)

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208 (2009)

6. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceed-
ings of Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Datamining, pp. 57–66 (2001)

7. Faisan, M.M., Bhavani, S.D.: Maximizing information or influence spread using
flow authority model in social networks. In: Natarajan, R. (ed.) ICDCIT 2014.
LNCS, vol. 8337, pp. 233–238. Springer, Heidelberg (2014)

8. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

prashant.anantharaman.gr@dartmouth.edu

http://www-personal.umich.edu/~mejn/netdata/
http://people.inf.ethz.ch/khana/dataset.html

60 J. Mallesham and S. Durga Bhavani

9. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

10. Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604–632 (1999)

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.M., Glance,
N.S.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 420–429 (2007)

12. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007). doi:10.1002/asi.v58:7

13. Narayanam, R., Narahari, Y.: A shapley value-based approach to discover influen-
tial nodes in social networks. IEEE Trans. Autom. Sci. Eng. 8(1), 130–147 (2011)

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1002/asi.v58:7

An Efficient Task Consolidation Algorithm
for Cloud Computing Systems

Sanjaya K. Panda1(&) and Prasanta K. Jana2

1 Department of Computer Science and Engineering
and Information Technology, Veer Surendra Sai University of Technology,

Burla 768018, India
sanjayauce@gmail.com

2 Department of Computer Science and Engineering, Indian School of Mines,
Dhanbad 826004, India

prasantajana@yahoo.co.in

Abstract. With the increasing demand of cloud computing, energy consump-
tion has drawn enormous attention in business and research community. This is
also due to the amount of carbon footprints generated from the information and
communication technology resources such as server, network and storage.
Therefore, the first and foremost goal is to minimize the energy consumption
without compromising the customer demands or tasks. On the other hand, task
consolidation is a process to minimize the total number of resource usage by
improving the utilization of the active resources. Recent studies reported that the
tasks are assigned to the virtual machines (VMs) based on their utilization value
on VMs without any major concern on the processing time of the tasks.
However, task processing time is also equal important criteria. In this paper, we
propose a multi-criteria based task consolidation algorithm that assigns the tasks
to VMs by considering both processing time of the tasks and the utilization of
VMs. We perform rigorous simulations on the proposed algorithm using some
randomly generated datasets and compare the results with two recent
energy-conscious task consolidation algorithms, namely random and MaxUtil.
The proposed algorithm improves about 10 % of energy consumption than the
random algorithm and about 5 % than the MaxUtil algorithm.

Keywords: Cloud computing � Task consolidation � Energy consumption �
Virtual machine � Resource utilization

1 Introduction

Cloud computing is extensively adopted in various communities for its variety of ser-
vices, namely infrastructure as a service (IaaS), platform as a service (PaaS) and software
as a service (SaaS) [1]. It makes tremendous growth in startups and small-to-medium
businesses as the services of cloud are delivered with no upfront commitments. As the
demands of cloud computing rapidly grow, it is very much essential to manage the
resources and properly utilize them. However, efficient resource utilization does not
imply to energy efficiency [2]. Therefore, the current research interest is to reduce the
energy consumption and minimize the total number of resource usage by enhancing the

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 61–74, 2016.
DOI: 10.1007/978-3-319-28034-9_8

prashant.anantharaman.gr@dartmouth.edu

resource utilization of the active resources. The increasing demand for information and
communication technology (ICT) resources make the service providers to re-think about
the energy consumption as ICT is responsible for a vast amount of CO2 emissions. For
instance, ICT resources consume about 8 % of the total energy consumption in the
United States each year and it is expected to reach about 50 % in the next decade [3, 4]. It
is reported that 66 % of the electricity in the United States is generated using coal and
natural gas [3]. As a result, some practitioners’ objective is to maximize the resource
utilization [5, 6] whereas others objective is to minimize the energy consumption [7, 8].
Most of the current research works [2, 9, 10] focus on both objectives by assigning the
customer tasks to that virtual machine (VM) which results in maximum resource uti-
lization. Moreover, it turned off the unused VMs to save the energy. Note that these
works are minimizing the energy only by considering the utilization of the VMs without
processing time of the tasks. This phenomenon inspires the idea of considering both
criteria, i.e., processing time and utilization in the form of a multi-criteria function to save
a substantial amount of energy. Therefore, we propose a multi-criteria based task con-
solidation (MTC) algorithm that minimizes energy consumption.

The key idea of MTC is to consider the linear combination (referred as fitness
value) of processing time and utilization of the tasks. For this, it assigns a weight value
to the processing time as well as the utilization. Then it sorts the tasks in the ascending
order of their fitness value. Finally, it assigns the tasks to that VM where it achieves
maximum utilization value. It makes the unused resources to be turned off. Thus the
main contributions of this paper are as follows. (1) We propose a multi-criteria function
to find the ordering of task execution. (2) We present how MTC can reduce energy
consumption by consolidating the tasks in cloud systems. (3) We compare our simu-
lation results with two well-known algorithms using some randomly generated datasets.

The rest of this paper is organized as follows: Sect. 2 discusses the state-of-the-art
in task consolidation. Section 3 presents the cloud and energy models followed by task
consolidation problem. Section 4 introduces the proposed algorithm with an illustrative
example. The simulation results of the proposed algorithm and its comparison with two
well-known task consolidation algorithms are presented in Sect. 5. We conclude with
brief remarks in Sect. 6.

2 Related Work

As the ICT devices are drawing the significant amount of power, energy consumption
is a crucial issue in the field of cloud computing. Many researchers [2, 7–11] have
proposed energy efficient algorithms to reduce the consumption of energy. One of the
possible solutions is to reduce the energy by transferring some of the customer tasks
from least loaded resources to the active resources and make the least loaded resources
in turn off mode. Chen et al. [12] have proposed a software-based approach that
includes two techniques, namely dynamic provisioning and load dispatching. The first
one aims to switch on the minimum number of resources, whereas the second aims to
share the loads among the active resources. However, frequent on and off resources
may cause a major overhead in this approach. Srikantaiah et al. [13] have presented the
consolidation problem as a modified bin packing problem. However, the problem is

62 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

considered only in terms of CPU and disk resources. Tesfatsion et al. [14] have
combined three techniques such as the number of VMs, the number of cores and the
CPU frequencies to minimize the energy consumption. They have used a feedback
controller to determine the optimal configuration. Chen et al. [15] have presented
proactive and reactive scheduling methods for real-time tasks in cloud computing.
Furthermore, they propose three scaling strategies to improve the energy consumption.
Hsu et al. [2] have proposed an energy-aware task consolidation by restricting the CPU
use below a threshold value. However, the threshold is set manually without consid-
ering the dynamic nature of the cloud environment. Lee et al. [9] have introduced two
energy efficient task consolidation algorithms for minimizing the energy consumption
implicitly or explicitly. The algorithms are purely based on the cost functions that select
a VM for a ready task. However, the frequent arrival of the tasks at any given time is
not considered in these algorithms.

The algorithm proposed in this paper is different from that of [2, 9] with respect to
following novel concepts. (1) Our algorithm takes advantage by considering a
multi-criteria function instead of single criterion function as used by [2, 9]. (2) The
algorithm reduces the substantial amount of energy in contrast to [9] by assigning the
tasks in ascending order of fitness value. (3) We evaluate the performance of our
proposed algorithm with a large set of tasks and VMs in compare to [2, 9]. Comparison
results show the efficacy of the proposed algorithm over random [9] and MaxUtil [9]
algorithms with respect to energy consumption.

3 Models and Problem Statement

3.1 Cloud and Energy Models

The cloud system consists of a set of physical servers that are connected to a network.
In order to meet the customer demands or tasks, VMs are created on the physical
servers. However, we assume that these VMs are homogeneous in terms of the com-
putational power, memory and storage. It is also assumed that the VM utilization of the
customer demands is determined before the task assignment takes place [9, 11]. A VM
may be present in one of the following states: idle, active or sleep/awake. They are
briefly described as follows. (1) Idle: A VM is yet to receive a task. (2) Active: A VM
is currently executing a task. (3) Sleep/Awake: A VM is turned off. However, in this
paper, we assume only idle and active states. Upon receiving a task, a VM changes its
state from idle to active. It again returns to the idle state after the completion of the
assigned task. The energy model assumes that the VM utilization is a linear one with
the energy consumption. Alternatively, the energy consumption of a VM is increased if
the VM utilization is also increased. The utilization of the VM i at any given time
j (denoted as UV j

i) is defined as the sum of the VM usage of all the tasks at any given
time j (denoted as UT j

o). Mathematically,

UV j
i ¼

Xn
o¼1

UT j
o � F j

o ð1Þ

An Efficient Task Consolidation Algorithm 63

prashant.anantharaman.gr@dartmouth.edu

where

F j
o ¼

1 if task o is assigned at any given time j
0 Otherwise

�
ð2Þ

and n = the total number of tasks. Therefore, the average utilization of all the VMs at
any given time j (i.e., UV j) is mathematically expressed as follows.

UV j ¼ 1
m

Xm
i¼1

UV j
i ð3Þ

where m = the total number of VMs. The energy consumption of the VM i at any given
time j (i.e., E j

i) is mathematically defined as follows [9].

E j
i ¼ pmax � pminð Þ � UV j

i þ pmin ð4Þ

where pmax and pmin are the power consumption at the peak and the active load
respectively. Therefore, the energy consumption of all the VMs at any given time
j (i.e., E j) is mathematically presented as follows.

E j ¼
Xm
i¼1

E j
i ð5Þ

The above model is similar to the cloud and energy models as used in [9] and our
earlier work [10].

3.2 Task Consolidation Problem

Given a set of n independent tasks and a set of m identical virtual machines in which
each task Ti, 1 ≤ i ≤ n is a quintuple, {ID, AT, PT, FT, U} where ID denotes the task
identification number, AT is the arrival time (also the start time), PT is the processing
time, FT is the finish time and U is the utilization. Note that FT = AT + PT. The
utilization value of a task Ti, 1 ≤ i ≤ n denotes how much time this task makes the VM
busy in a higher end. The problem is to assign the tasks to the VMs such that the energy
consumption is minimized. This problem is subjected to following scheduling con-
straints. (1) The time constraints of a task Ti, 1 ≤ i ≤ n such as start and processing
times are fixed. (2) A task Ti, 1 ≤ i ≤ n is assigned before a task Tj, 1 ≤ j ≤ n, i ≠ j iff the
arrival time of the task Ti, denoted as AT(Ti), is less than the arrival time of the task Tj
(i.e., AT(Tj)). Mathematically, AT(Ti) < AT(Tj). However, if the arrival time of two
different tasks is same, then they are assigned in any order. (3) A task Ti, 1 ≤ i ≤ n is not
assigned to a virtual machine VMj, 1 ≤ j ≤ m iff the sum of the utilization of the task and
the utilization of the VM at a requested period exceeds 100 %. (4) A task Ti,
1 ≤ i ≤ n cannot be preempted, migrated and/or split at any cost.

64 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

4 Proposed Algorithm

4.1 Multi-criteria Based Task Consolidation

The multi-criteria based task consolidation (MTC) is a two-phase task consolidation
algorithm. In the first phase, it makes a decision on the ordering of tasks that arrives at
the same time. For this, it normalizes the processing time and the utilization of each
task based on the maximum processing time and maximum utilization respectively.
Then it calculates the fitness value F for each task as follows.

F ¼ k � normalized processing timeð Þ þ 1 � kð Þ � normalized utilizationð Þ ð6Þ

where 0 < λ < 1. Subsequently, it sorts the tasks in the ascending order of their fitness
value. This completes the first phase. The rationality behind the first phase is that the
task with low fitness value is ordered before higher ones as it increases the VM
utilization in compare to the chronological order as used in [9]. Note that it is possible
if and only if two or more tasks are arriving at the same time.

Remark 4.1. The process of normalization is essential as it makes the value in the
range of 0 to 1. Otherwise, one high value may dominate the others.

In the second phase, the sorted tasks are assigned one after another to one of the
VMs where it achieves maximum cost value. The cost value of a VMi (i.e., COi) is
defined as follows [9].

COi ¼ 1
p

Xp
j¼1

UV j
i ð7Þ

where p is the processing time of the task.

4.2 Algorithm Description

We use the following terminologies (Table 1) for the pseudo code of the proposed
MTC which is shown in Fig. 1.

MTC places the customer tasks in the ascending order of their arrival time in
Q (Line 1) and the quintuple of the tasks are placed in the TC matrix where each row
denotes a task i and the columns denote the task identification number (i.e., TC(i, 1)),
arrival time (TC(i, 2)), processing time (TC(i, 3)), finish time (TC(i, 4)) and utilization
(TC(i, 5)) respectively. Next it initializes the weight value based on the various factors
such as energy consumption, processing cost and utilization cost (Line 2). Then it
calculates the |Q| (Line 3). Note that the tasks in the Q may have same arrival time.
MTC begins its first phase by normalizing the processing time and the utilization of the
tasks in Q (Line 4–10). For this, it needs to find the maximum processing time and the
maximum utilization of the tasks in Q (Line 4–5). Then it divides each processing time
by the maximum processing time (Line 7) and each utilization by the maximum

An Efficient Task Consolidation Algorithm 65

prashant.anantharaman.gr@dartmouth.edu

utilization (Line 8) to normalize these values in the range of (0 * 1]. Next it calculates
the fitness value of the tasks using the normalized processing time, normalized uti-
lization and weight value respectively (Line 9). Finally, it sorts the tasks in the
ascending order of their fitness value and accordingly sort the Q and TC respectively
(Line 11).

Lemma 4.1. The time complexity of the process of normalization is O(kn).

Proof: Let nʹ be the number of tasks that are ready at time t = 1, n is the total number of
tasks, nʹ < < n and k is the total number of iterations. To find the maximum processing
time and the maximum utilization at t = 1, Steps 4 and 5 require O(nʹ) time. Again, the
for loop of Steps 6 to 10 require O(nʹ) time. Therefore, the normalization process of nʹ
tasks requires O(nʹ) time. In the similar fashion, O(nʹʹ) time is required to normalize nʹʹ

Table 1. Notations and their definitions.

Notation Definition

Q Queue of all the tasks
λ Weight value, λ 2 [0 * 1]
|Q| Total number of tasks in the queue Q
max A function to find the maximum
TC Task consolidation matrix
NTC Normalized task consolidation matrix

UT j
i

Utilization of task i at any given time j

UV j
k

Utilization of VM k at any given time j

Algorithm: MTC
1. while Q ≠ NULL
2. Initialize λ
3. Find |Q|
4. Find max_p = max((,3)),1 | |TC k k Q

k
≤ ≤

5. Find max_u = max((,5)),1 | |TC k k Q
k

≤ ≤

6. for k = 1, 2, 3,…, |Q|

7.
(,3)

(,1)
max_
TC k

NTC k
p

=

8.
(,5)

(, 2)
max_

TC k
NTC k

u
=

9. F(k) = λ × NTC(k, 1) + (1 - λ) × NTC(k, 2)
10. endfor
11. Sort the tasks in the ascending order of their F value and update Q and TC
12. Call SCHEDULE-BY-MULTI-CRITERIA(TC, |Q|)
13. endwhile

Fig. 1. Pseudo code for MTC algorithm

66 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

tasks that are ready at time t = 2 and O(nʹʹʹ) time is required for nʹʹʹ tasks that are ready
at time t = k. Therefore, the time complexity of the process of normalization is O(kn) by
assuming n = max(nʹ, nʹʹ,…, nʹʹʹ).

MTC calls the Procedure 1 (SCHEDULE-BY-MULTI-CRITERIA) to assign the
sorted tasks one after another to one of the VMs. First, it finds the sum of the VM
utilization and the task utilization in the requested period (Line 5). If it is not exceeding
100, then it increases the count value by one (Line 6) and updates the estimated value
(Line 7). Next it checks the count value is same as the requested period or not (Line
10). If not, it fixes the estimated utilization value to zero (Line 13). Otherwise, it stores
the estimated value (Line 11). Note that the estimated utilization is fixed to zero as the
VM should not satisfy the task requirements. The maximum estimated utilization is
determined to assign the task to the VM (Line 16). Then it finds the VM where
the maximum estimated utilization is achieved (Line 17–18). Subsequently, it assigns
the task to the VM (Line 19) and updates the VM utilization for the requested period of
the task (Line 20–22). The above process is repeated for all the tasks in Q (Line 1–25)
(Fig. 2).

Remark 4.2. The count value should not equal to the requested period if and only if
one or more requested period exceeds 100.

Procedure 1: SCHEDULE-BY-MULTI-CRITERIA(TC, |Q|)

1. for k = 1, 2, 3,…, |Q|
2. for i = 1, 2, 3,…, m
3. Set count = 0 and est = 0
4. for j = TC(k, 2) to TC(k, 4)

5. if 100j jUV UTi k+ ≤

6. count = count + 1

7. j jest est UV UTi k= + +

8. endif
9. endfor
10. if count == (TC(k, 4) - TC(k, 2))
11. est_util(i) = est
12. else
13. est_util(i) = 0
14. endif
15. endfor
16. max_est_util = max(_ ()),1est util i i m

i
≤ ≤

17. for i = 1, 2, 3,…, m
18. if est_util(i) == max_est_util
19. Assign task Tk to VM Vi

20. for j = TC(k, 2) to TC(k, 4)

21. j j jUV UV UTi i k= +

22. endfor
23. endif
24. endfor
25. endfor

Fig. 2. Pseudo code for schedule the tasks

An Efficient Task Consolidation Algorithm 67

prashant.anantharaman.gr@dartmouth.edu

Lemma 4.2. The time complexity of finding the utilization of VMs are O(mp).

Proof: Let m be the total number of VMs and p is the maximum processing time of all
the tasks. The inner for loop of the Procedure 1 iterates p times in the worst case (Steps
4 to 9). Hence, it takes O(p) time. Steps 10 to 14 require O(1) time. However, Steps 2 to
15 iterate m times. Therefore, the time complexity of finding the utilization of VMs are
O(mp) time.

Lemma 4.3. The time complexity of finding the VM for a task and assigning that
task to the VM is O(mp).

Proof: To assign a task to the VM that gives maximum utilization, Steps 20 to 22
requires O(p) time. To find the VM that gives maximum utilization for a task, it
requires O(m) time. However, Steps 17 to 24 requires O(mp) time. Therefore, the time
complexity is O(mp) time.

Lemma 4.4. The time complexity of Procedure 1 is O(nmp).

Proof: Like Lemma 4.1, for nʹ tasks, Steps 1 to 25 requires O(nʹmp) time as Steps 2 to
15 requires O(mp) time (Lemma 4.2), Steps 16 requires O(m) time and Steps 17 to 24
requires O(mp) time (Lemma 4.3). Similarly, for nʹʹ tasks at t = 2, Steps 1 to 15 requires
O(nʹʹmp) time and O(nʹʹʹmp) time for nʹʹʹ tasks at t = k. As a result, the time complexity
of Procedure 1 is O(nmp) by assuming n = max(nʹ, nʹʹ,…, nʹʹʹ).

Theorem 4.1. The time complexity of proposed algorithm MTC is O(knmp).

Proof: The MTC algorithm iterates k times for nʹ, nʹʹ,…, nʹʹʹ tasks respectively. For nʹ
tasks, Steps 2 to 3 require O(1) time, the process of normalization takes O(nʹ) time,
Step 11 takes O(nʹ) time and Procedure 1 takes O(nʹmp) time. Hence, the time com-
plexity to execute nʹ tasks require O(nʹmp) time as Procedure 1 dominates others.
Similarly, for nʹʹ tasks, it requires O(nʹʹmp) time and O(nʹʹʹmp) time for nʹʹʹ tasks.
Therefore, the time complexity of proposed algorithm MTC is O(knmp) by assuming
n = max(nʹ, nʹʹ,…, nʹʹʹ).

Lemma 4.5. MTC behaves like MaxUtil if the ordering of the tasks after the first
phase remains intact with the arrival sequence of the tasks.

Proof: Let the ordering of the tasks is Ti; Tiþ 1; . . .; Tn and it is same as the arrival of the
tasks. In this case, both MaxUtil and MTC assign tasks in the chronological order. As
stated earlier, the second phase of the MTC is inherited from MaxUtil. As a result, both
algorithms assign the tasks to the VMs that gives the maximum VM utilization.
Therefore, this is a typical case where MTC behaves like MaxUtil.

4.3 An Illustration

Let us consider an example that consists of ten tasks as shown in Table 2. These tasks
are assigned to three VMs as per their arrival time.

68 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

At t = 1, three tasks arrive into the cloud system. The proposed MTC algorithm
calculates the fitness value of these tasks by assuming λ = 0.5 and they are 0.8998 (i.e.,
0.5 × (25/29) + 0.5 × (30/32)), 0.9844 and 0.8966 respectively. As a result, it assigns
the tasks in the following order: T3, T1 and T2 respectively (Fig. 3). At t = 2, another
four tasks arrive and their fitness value is 0.9, 0.875, 0.9375 and 0.8510 respectively.
Therefore, they are assigned in the following order: T7, T5, T4 and T6 respectively.
However, task 6 requires 30 % utilization that is not satisfied by both virtual machines
(Fig. 4). Hence, it is assigned to a new VM3 (Fig. 5). At t = 3, three more tasks arrive
and their processing order is T8, T9 and T10 respectively (Fig. 5).

In Fig. 4, task 8 is assigned to VM2 based on the higher utilization (i.e.,
(97 × 31 + 21 × 3)/34 = 90.29) whereas the utilization is 44.82 in VM3. The energy
consumption is 115140 units of energy by assuming pmax and pmin value as 30 and 20
respectively.

Table 2. Task consolidation (TC) matrix.

ID AT PT FT U

T1 1 25 26 30
T2 1 29 30 31
T3 1 23 24 32
T4 2 32 34 24
T5 2 24 26 30
T6 2 28 30 30
T7 2 31 33 22
T8 3 34 37 21
T9 3 35 38 27
T10 3 28 31 35

VM1 1~32 32~62 62~93 93~100
1~24 T3

T1
T2

*
24~26 * *
26~30 * * *
30~38 * * * *

Fig. 3. Gantt chart for VM1 using MTC

VM2 1~22 22~52 52~76 76~97 97~100
2~3

T7
T5

T4

* *
3~26

T8

*
26~33 *
33~34 * * *
34~37 * * *
37~38 * * * * *

Fig. 4. Gantt chart for VM2 using MTC

An Efficient Task Consolidation Algorithm 69

prashant.anantharaman.gr@dartmouth.edu

We also produce the Gantt charts of the existing MaxUtil in Figs. 6 , 7, 8 and 9 and
existing random in Figs. 10, 11, 12 and 13 respectively. Note that these algorithms
require four VMs to execute the same ten tasks. If we have only three VMs, then these
algorithms execute all the tasks except task 10 with an energy consumption of 115140
units of energy. However, it takes 153520 in four VMs, i.e., 34 % (approx.) more
energy consumption than the proposed algorithm. The illustration shows that the
proposed algorithm performs better than the existing algorithms in terms of energy
consumption.

VM3 1~30 30~57 57~92 92~100
2~3

T6

* * *
3~30

T9

T10

*
30~31 * *
31~38 * * *

Fig. 5. Gantt chart for VM3 using MTC

VM1 1~30 30~61 61~93 93~100
1~24

T1
T2

T3 *
24~26 * *
26~30 * * *
30~38 * * * *

Fig. 6. Gantt chart for VM1 using MaxUtil

VM2 1~24 24~54 54~84 84~100
2~26

T4

T5 T6
*

26~30 * *
30~34 * * *
34~38 * * * *

Fig. 7. Gantt chart for VM2 using MaxUtil

VM3 1~22 22~43 43~70 70~100
2~3

T7

* * *
3~4

T8 T9

*
4~33 *
33~37 *
37~38 * * *

Fig. 8. Gantt chart for VM3 using MaxUtil

VM4 1~35 70~100
3~31 T10 *

31~38 * *

Fig. 9. Gantt chart for VM4 using MaxUtil

VM1 1~32 32~62 62~89 89~100
1~2

T3

* * *
2~3

T5

* *
3~24

T9

*
24~26 * *
26~38 * *

Fig. 10. Gantt chart for VM1 using random

VM2 1~30 30~61 61~85 85~100
1~2

T1
T2

* *
2~26

T4

*
26~30 * *
33~34 * * *
34~38 * * *

Fig. 11. Gantt chart for VM2 using random

70 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

5 Simulation Results

5.1 Simulation Setups and Datasets

We carried out the simulations using MATLAB R2014a version 8.3.0.532 on an Intel
(R) Core (TM) i3-2330M CPU @ 2.20 GHz 2.20 GHz CPU and 4 GB RAM running
on Microsoft Windows 7. We evaluate the performance of the proposed algorithm
through simulation run with some randomly generated datasets. In each simulation run,
we took an instance of the dataset whose general structure is t_ix_yy. Here, t denotes
the total number of tasks that are assigned to the yy number of VMs and ix denotes the
instance ID. We select the diverse set of tasks such as 100, 500, 1000, 5000 and 10000.
We choose the different number of VMs such as 10, 20, 30, 40 and 50. In each task and
VM type, we prepare five different instances as shown in the even column of Table 4.
These instances are generated using the MATLAB random function with various
constraints as shown in Table 3.

5.2 Results and Discussion

We ran 25 instances for random, MaxUtil and the proposed MTC algorithms and their
energy consumptions are calculated by taking pmax = 30 and pmin = 20 as used in [9].

VM3 1~30 30~52 52~73 73~100
2~3

T6
T7

* *
3~30

T8

*
30~33 * *
33~37 * * *
37~38 * * * *

Fig. 12. Gantt chart for VM3 using random

VM4 1~35 70~100
3~31 T10 *
31~38 * *

Fig. 13. Gantt chart for VM4 using random

Table 3. Dataset parameters and their lower and upper limits.

Parameter 100_ix_10 500_ix_20 1000_ix_30 5000_ix_40 10000_ix_50

Arrival time [1 * 15] [1 * 100] [1 * 250] [1 * 1000] [1 * 2000]
Processing time [5 * 20] [5 * 25] [5 * 35] [5 * 40] [5 * 50]
Utilization [5 * 20] [5 * 25] [5 * 35] [5 * 40] [5 * 50]

Table 4. Comparison of energy consumption for random, MaxUtil and MTC algorithms.

Algorithm Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

Random 100 336330 500 1476620 1000 7634590 5000 32337170 10000 112145350

MaxUtil _i1_ 323200 _i1_ 1373600 _i1_ 7097270 _i1_ 30211120 _i1_ 104561260

MTC 10 316130 20 1366530 30 7079090 40 29714200 50 104396630

Random 100 329260 500 1420060 1000 7618430 5000 31616030 10000 113617930

MaxUtil _i2_ 328250 _i2_ 1329160 _i2_ 7264930 _i2_ 29223340 _i2_ 105936880

(Continued)

An Efficient Task Consolidation Algorithm 71

prashant.anantharaman.gr@dartmouth.edu

Table 4. (Continued)

Algorithm Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

Dataset Units of
energy

MTC 10 314110 20 1318050 30 7162920 40 29182940 50 105881330

Random 100 290880 500 1402890 1000 7570960 5000 42040240 10000 111902950

MaxUtil _i3_ 278760 _i3_ 1287750 _i3_ 7219480 _i3_ 39556650 _i3_ 104643070

MTC 10 269670 20 1284720 30 7104340 40 39519280 50 104395620

Random 100 309060 500 1990710 1000 7658830 5000 41821070 10000 112549350

MaxUtil _i4_ 305020 _i4_ 1852340 _i4_ 7251800 _i4_ 38994080 _i4_ 105402590

MTC 10 300980 20 1823050 30 7203320 40 38933480 50 105297550

Random 100 313100 500 1947280 1000 7714380 5000 41504940 10000 112241300

MaxUtil _i5_ 304010 _i5_ 1822040 _i5_ 7339670 _i5_ 38693100 _i5_ 104742050

MTC 10 296940 20 1788710 30 7257860 40 38612300 50 104711750

i1 i2 i3 i4 i5

2.5

3

3.5
x 10

5

Instances

E
ne

rg
y

C
on

su
m

pt
io

n

100_ix_10

Random
MaxUtil
MTC

i1 i2 i3 i4 i5
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x 10
6

Instances

E
ne

rg
y

C
on

su
m

pt
io

n

500_ix_20

Random
MaxUtil
MTC

i1 i2 i3 i4 i5
7

7.2

7.4

7.6

7.8

8
x 10

6

Instances

E
ne

rg
y

C
on

su
m

pt
io

n

1000_ix_30

Random
MaxUtil
MTC

i1 i2 i3 i4 i5

2.8

3

3.2

3.4

3.6

3.8

4

4.2

x 10
7

Instances

E
ne

rg
y

C
on

su
m

pt
io

n

5000_ix_40

Random
MaxUtil
MTC

i1 i2 i3 i4 i5
1

1.05

1.1

1.15
x 10

8

Instances

E
ne

rg
y

C
on

su
m

pt
io

n

10000_ix_50

Random
MaxUtil
MTC

Fig. 14. Graphical comparison of energy consumption in (a) 100_ix_10, (b) 500_ix_20,
(c) 1000_ix_30, (d) 5000_ix_40 and (e) 10000_ix_50 datasets

72 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

The comparison of energy consumption for these algorithms is shown in Table 4.
For the sake of easy visualization, we also present the graphical comparison as shown
in Fig. 14(a)–(e). The results clearly conclude that 25 out of 25 instances (i.e., 100 %)
give better energy consumption for the proposed algorithm MTC than the random and
MaxUtil algorithms. Note that we have not shown the resource utilization of the VMs
as it is already associated with energy consumption. It is important to note that the
proposed MTC improves about 10 % energy consumption over the random and about
5 % over the MaxUtil task consolidation algorithm.

6 Conclusion

We have presented a task consolidation algorithm MTC for cloud computing systems.
The algorithm has been shown to require O(knmp) time. It was simulated on various
datasets and evaluated in terms of energy consumption. The results show that the
proposed algorithm reduces about 10 % energy consumption than random algorithm
and about 5 % than MaxUtil algorithm in the generated datasets.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: vision, hype and reality for delivering computing as the 5th utility.
Future Gener. Comput. Syst. 25, 599–616 (2009). Elsevier

2. Hsu, C., Slagter, K.D., Chen, S., Chung, Y.: Optimizing energy consumption with task
consolidation in clouds. Inf. Sci. 258, 452–462 (2014). Elsevier

3. Mills, M.P.: The Cloud Begins with Coal: Big Data, Big Networks, Big Infrastructure and
Big Power. Technical report, National Mining Association, American Coalition for Clean
Coal Electricity (2013)

4. Hohnerlein, J., Duan, L.: Characterizing cloud datacenters in energy efficiency, performance
and quality of service. In: ASEE Gulf-Southwest Annual Conference, The University of
Texas, San Antonio, American Society for Engineering Education (2015)

5. Panda, S.K., Jana, P.K.: Efficient task scheduling algorithms for heterogeneous multi-cloud
environment. J. Supercomputing 71, 1505–1533 (2015). Springer

6. Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for scheduling
preemptable tasks on iaas cloud system. J. Parallel Distrib. Comput. 72, 666–677 (2012).
Elsevier

7. Friese, R., Khemka, B., Maciejewski, A.A., Siegel, H.J., Koenig, G.A., Powers, S., Hilton,M.,
Rambharos, J., Okonski, G., Poole, S.W.: An analysis framework for investigating the
trade-offs between system performance and energy consumption in a heterogeneous
computing environment. In: 27th IEEE International Symposium on Parallel and Distributed
Processing Workshops and Ph.D. Forum, pp. 19–30 (2013)

8. Khemka,B., Friese,R., Pasricha, S.,Maciejewski,A.A., Siegel,H.J.,Koenig,G.A., Powers, S.,
Hilton, M., Rambharos, R., Poole, S.: Utility driven dynamic resource management in an
oversubscribed energy-constrained heterogeneous system. In: 28th IEEE International Parallel
and Distributed Processing Symposium Workshops, pp. 58–67 (2014)

An Efficient Task Consolidation Algorithm 73

prashant.anantharaman.gr@dartmouth.edu

9. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing
systems. J. Supercomputing 60, 268–280 (2012). Springer

10. Panda, S.K., Jana, P.K.: An efficient energy saving task consolidation algorithm for cloud
computing. In: Third IEEE International Conference on Parallel, Distributed and Grid
Computing, pp. 262–267 (2014)

11. Fan, X., Weber, W., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In:
The 34th Annual International Symposium on Computer Architecture, pp. 13–23. ACM
(2007)

12. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server
provisioning and load dispatching for connection-intensive internet services. In: 5th USENIX
Symposium on Networked Systems Design and Implementation, pp. 337–350 (2008)

13. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In:
International Conference on Power Aware Computing and Systems, pp. 1–5 (2008)

14. Tesfatsion, S.K., Wadbro, E., Tordsson, J.: A combined frequency scaling and application
elasticity approach for energy-efficient cloud computing. Sustain. Comput. Inf. Syst. 4,
205–214 (2014). Elsevier

15. Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X., Wu, J.: Towards energy-efficient scheduling for
real-time tasks under uncertain cloud environment. J. Syst. Softw. 99, 20–35 (2015).
Elsevier

74 S.K. Panda and P.K. Jana

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler
Using Predictive Analytics

Kumar Dheenadayalan(B), V.N. Muralidhara,
and Gopalakrishnan Srinivasaraghavan

International Institute of Information Technology, Bangalore, India
d.kumar@iiitb.org, {murali,gsr}@iiitb.ac.in

Abstract. The gap between computing capability of servers and storage
systems is ever increasing. Genesis of I/O intensive applications capable
of generating Gigabytes to Exabytes of data has led to saturation of I/O
performance on the storage system. This paper provides an insight on the
load controlling capability on the storage system through learning algo-
rithms in a Grid Computing environment. Storage load control driven by
meta schedulers and the effects of load control on the popular scheduling
schemes of a meta-scheduler are presented here. Random Forest regres-
sion is used to predict the current response state of the storage system
and Auto Regression is used to forecast the future response behavior.
Based on the forecast, time-sharing of I/O intensive jobs is used to take
proactive decision and prevent overloading of individual volumes on the
storage system. Time-sharing between multiple synthetic and industry
specific I/O intensive jobs have shown to have superior total comple-
tion time and total flow time compared to traditional approaches like
FCFS and Backfilling. Proposed scheme prevented any down time when
implemented with a live NetApp storage system.

Keywords: Storage response time · Storage filer · Random forest
regression · Time-sharing · Storage load controller

1 Introduction

Large scale systems like the Grid Computing environment [7] has tremen-
dous computing power. Storage technology has been evolving continuously to
keep up with the growth in computing power. Even though storage technol-
ogy has advanced considerably, it still forms the bottleneck in delivering high
performance in a distributed environment. As more applications are becoming
data intensive, there is continuous growth in data access intensity, imposing
greater load on the storage systems. For instance, CERN lab generates around
1 Petabyte (PB) of data per day [3] with peak load reaching up to 10 Giga-
bytes (GB) per second. This generates huge I/O operations capable of clogging
the I/O bandwidth resulting in unresponsiveness and sometimes leading to job
failure [5,9].

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 75–86, 2016.
DOI: 10.1007/978-3-319-28034-9 9

prashant.anantharaman.gr@dartmouth.edu

76 K. Dheenadayalan et al.

Grid Computing Environment can handle different type of jobs with different
run lengths. With storage being an important resource in Grid Computing system,
it’s important to consider the performance of the storage system while scheduling
jobs. Storage as a resource has found limited consideration while scheduling a job.
Past research was focused on decoupling problems of storage and the performance
of a scheduler. Finding the right balance between controlling the load on the filer
and maintain good performance of the scheduler is attempted here. Not much of
research has gone into controlling I/O load through a scheduler that is actually con-
trolling the sequence of jobs responsible for I/O load generation. Meta-Schedulers
are used in large scale Grid computing environments to manage millions of jobs.
A meta-scheduler driven storage load controller that maintains the performance
at optimal levels and enhancing the productivity of the meta-scheduler and Grid
environment on the whole is achieved in the paper. This can eliminate the need to
have a storage oriented load balancing mechanism.

A filer is a specialized file server capable of providing fast data access. A mod-
ern storage filer supports various specialized hardware to handle high I/O load.
Performance of a storage filer depends on a number of parameters. Monitoring a
single filer performance parameter like CPU or memory utilization or I/O latency
on a filer with multiple individual components is not the wisest approach to find
the response state. Identifying the different combination of the parameters that are
ideally suited for accurately deciding the response state is a difficult task. Machine
learning approach to identify andpredict current response state and forecast future
response was proven to be successful in [6]. We build on the ideas presented in [6]
and provide a simpler solution to identify the current state of the filer and its indi-
vidual logical entity called volume. The time required by the filer (in its current
state) to write benchmark units of data on an individual volume is predicted. We
also extend the idea to provide a simplistic solution to forecast the future response
time of the volumes in the next t minutes. If the forecasted response time is beyond
a threshold rthreshold, informed time-sharing of I/O intensive jobs is enforced to
minimize the load on the individual volumes that are being accessed by jobs.

As the set of candidate jobs for time-sharing is derived from the information
provided by the meta-scheduler the need to have a storage oriented load bal-
ancing mechanism is eliminated. Total completion time and Total Flow time are
couple of key criterion used to measure the success of a schedule [1]. Comple-
tion time is defined as the difference between job processing start time and job
finish time. Total completion time is measured as the sum of completion times
of individual jobs submitted to the Grid environment in a schedule. We define
Flow completion time as the difference between the job submit time and the job
finish time. Flow completion time includes the time spent by the job waiting for
a slot to be scheduled plus the completion time.

Next section talks about the past literature followed by an overview and
analysis of the proposed Storage Load Controller in Sect. 3. Modeling and imple-
mentation details are discussed in Sect. 4. Model is validated and the results are
presented in Sect. 5 followed by the conclusion in Sect. 6.

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler Using Predictive Analytics 77

2 Literature Survey

There is considerable amount of research in the field of storage load balancing in
the past [8,12]. But the action of load balancing is derived based on individual
or a small subset of storage performance parameters. Data migration based on
deterministic analysis of the individual filer performance parameters is one of the
popular techniques in load balancing [12,13,15] The performance impact on the
storage system during the process of load balancing is not negligible. The need
for migration which has been used in traditional approaches of load balancing is
completely eliminated in this paper.

NetApp is a popular storage vendor which provides a solution to control the
load on a storage filer [5,9]. The process of identifying the filer performance
parameters to be monitored and defining the threshold for individual filer per-
formance parameters in [5,9] are left to the administrators. This can be a big
problem as the parameter subset and their thresholds vary based on the filer con-
figuration and workload generating the I/O. It also has a hierarchical method
of deciding the state of each volume (logical entity of a filer). The process of
manually identifying parameters and their associated threshold values is elimi-
nated by using Random Forest Regression with windowing scheme is proposed
in this paper. Existing NetApp Solution forces all the jobs accessing a loaded
volume to be in PEND ing state till the filer parameters go below the thresholds
defined by the administrator. This is detrimental to the overall compute effi-
ciency as short jobs are bound to suffer in that scenario. Time-sharing among
I/O intensive jobs accessing the filer with high load may help short jobs to get
access to the filer for short periods of time. This allows shorter jobs to complete
their task instead of starving for I/O bandwidth. [11,19,20] propose data-aware
schedulers with emphasis on the data requirement of the jobs. Knowing data
requirements of the job is a difficult task and it depends on the information pro-
vided by user while launching jobs. Estimating the size of the output generated
by the job is not easy. [11] also assumes that the data request sequence is known
to the scheduler which is not always true. The proposed solution makes no such
assumptions.

Our past work in [6] uses Random Forest, a decision tree based algorithm
to identify multiple rules that help the framework to decide the current state of
the filer. This offers a major advantage compared to [5,9] and helps in devel-
oping an efficient self-learning system. [6] forecasts the future response class
by forecasting the individual parameters of a filer and these forecasts are pro-
vided to the classifier. The idea of forecasting individual parameters lead to
higher error rates as forecasting hundreds of filer parameters comes with indi-
vidual error rates. The cumulatively error rate of forecasting hundreds of para-
meters will decrease the overall accuracy of response class. Random Forest
Regression [14] is used in the current work instead of Random Forest Classi-
fication [2] to get the instantaneous response time of the filer. The predicted
response time trends are treated as time series data to forecast the future
response times using Auto Regression model. This modification proves to be 7 %

prashant.anantharaman.gr@dartmouth.edu

78 K. Dheenadayalan et al.

more accurate over a forecasting period of 10 min compared to the forecasting
proposed in [6].

Knowing the state of the filer can be used to efficiently share I/O bandwidth
between multiple jobs accessing the same volume. Controlling the load on the filer
can help in achieving faster completion time leading to earlier execution starts
for other jobs. [4] illustrates how time sharing has been useful in enhancing the
throughput of the system.

3 Storage Load Controller

Storage Load Controller is an independent component developed to control load
and optimize the completion times for all I/O jobs. Load Sharing Facility (LSF)
[17] is a popular, commercially available meta-scheduler from International Busi-
ness Machines (IBM), widely used in various industries, especially in Electronic
Design and Automation (EDA) industry. We integrate the Storage Load Con-
troller with LSF meta-scheduler for Grid Computing Environment. Three impor-
tant states of a job handled by LSF are PEND (new job waiting for a slot/server
to begin execution), USUSP (job suspended by user or forced preemption) and
RUN state. Storage Load Controller has the capability to interact with filers,
compute servers and meta-schedulers. It also has the ability to suspend and
resume jobs managed by the meta-scheduler. Suspending a job on LSF will put
the processes of the job to USUSP state but the slot occupied by the job is
retained. No pending job in the meta-scheduler will be able to get access to a
slot occupied by a suspended job. Hence, the Load Controller has to effectively
time-share the I/O jobs and move them between USUSP and RUN state to
ensure early finish of jobs.

The core idea of Storage Load Controller is to monitor, predict and forecast
the load on individual volumes of the filer. When the load on an individual
volume is above the threshold defined by the Grid administrator, all the I/O
intensive jobs accessing the volume except the oldest job are forced to share I/O
bandwidth in a Round Robin fashion. In the proposed scheme none of the CPU
intensive jobs are involved in time-sharing. The idea here is to allow the oldest
I/O intensive job that entered the Grid setup to run to completion without
being hampered by load generated by other jobs. Time-sharing also helps the
completion of I/O intensive jobs that have enough compute resource but their
progress is hampered by slow I/O response.

We focus our analysis on the time required to process a job at a load of η as
defined in Eq. (1) where rnormal is the response time at normal load or no load
on the filer. The worst case scenario for a Grid setup is when all jobs experience
high I/O load when they enter the system. We assume that the jobs follow
Poisson’s arrival with ρ being the utilization factor of Poisson’s distribution. We
also assume a hyper-exponential service time distribution. Let ni be the number
of jobs required to breach the threshold factor η for ith volume, voli. It is assumed
that till a point where a volume has (ni − 1) jobs accessing it, the load on the

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler Using Predictive Analytics 79

filer will be under control. The worst case processing time Tq of job q at load η
is given by Eq. (2).

η =
rthreshold

rnormal
(1)

Tq =
∑

r<q

Tr + Remaining Processing time of q. (2)

The amount of time a job spends in a Round Robin scheme and the amount
of time a job gets uninterrupted storage access are given by

∑

r<q
Tr and Tq− ∑

r<q
Tr

respectively. As soon as all the ‘r’ older jobs complete their execution, jobq will
get continuous I/O access till completion without being suspended. The fact that
one job will go to completion under controlled filer load enhances the completion
time for that individual job. [18,21] uses Pollaczek-Khinchin (P-K) Formula to
show that expected time for completion of jobs in FCFS scheme is directly
proportional to the variability of the service times of the jobs. When coefficient of
variability of service time is much greater than 1, Round Robin implementation
is superior [18]. Large-scale Grid environments are known to have large variance
in service time. We do not use classical Round Robin algorithm because there
will be loss of throughput and underutilization of storage resource due to which
at least one job will get uninterrupted access.

When the number of I/O jobs accessing a volume are less than ni, the
response time is less than rthreshold. Hence Storage Load Controller will work
like FCFS as the response time is maintained below rthreshold. If the number
of I/O jobs accessing a volume are greater than or equal to ni, Storage Load
Controller will share the I/O subsystem among n - 1 jobs. Let δ be the length
of the time slice and N(δ) be the number of time slices required for jobq to
complete in a classical Round Robin Scheduling scheme. Let l =

∑

r<q
Tr which

is the time spent by jobq in the Round Robin scheme of the proposed Storage
Load Controller. We calculate the remaining processing time for a job after it
becomes the oldest job as Rq = (N(δ) ∗ δ) − l . If Round Robin scheme was
continued after Rq duration, then the number of time slices remaining is given
by Eq. (3).

RRRq
=

(N(δ) ∗ δ) − l

(1 − ρ)
(3)

((N(δ) ∗ δ) − l) <
(N(δ) ∗ δ) − l

(1 − ρ)
(4)

It is clear that Rq < RRRq
. Equation (4) holds true whenever there are ni or

more jobs accessing a volume which has necessitated the need for time sharing.
As soon as the load factor is below η Eq. (4) fails and hence FCFS is enforced
by the Storage Load Controller. The number of I/O intensive jobs required to
load a volume depends on multiple factors. ni will gradually decrease as more
volumes are loaded for the same filer. This is because, all physical entities of
a filer are shared among the logical entities (voli). Hence, ni > . . . > nj for
voli . . . volj , where voli is the first volume loaded.

prashant.anantharaman.gr@dartmouth.edu

80 K. Dheenadayalan et al.

4 Modeling and Implementation

4.1 Data Extractor

The data extractor is responsible for collecting live storage filer performance
parameters at a pre-defined interval ‘d’, which will be used for response predic-
tion. Data extractor is also responsible to collect information about all jobs that
are executing in the Grid Environment. A job can launch multiple processes and
each process can access multiple files. It’s important to identify candidate jobs
for time-sharing that are actually involved in I/O to cause prolonged load on
the filer. A naive way of achieving this is to keep track of all the file descriptors
opened by the job and its processes along with the size and time stamps. This
will be used to identify the jobs, which are most probable candidates for gener-
ating the load on the filer and hence be a candidate to share the I/O bandwidth.
A job involved in continuous change in the file size or continuous modification
of large files can be a typical candidate. Data extractor communicates directly
with meta-schedulers like LSF to gather job related information and store the
same in a structured form called the jobDetails structure. The key information
collected are: jobID, serverName, jobStartTime, allFileDetails → [processIDs,
fileDescriptors, filerName, volumeName, size, accessTime, modifyTime].

allFileDetails is used to store multiple file descriptors which are actively
being accessed by the job on the filer. There is no overhead generated by data
extractor in this process as all the necessary information except file statistics
are already available with LSF. Filer performance parameters are also collected
by Data Extractor. Each request to fetch a set of filer performance parameter
(V) provides a set of volume parameters (Vvoli) and system (network, protocol,
other subsystem and statistics) related parameters (Vsys). Volume parameters
will be unique to each volume but rest of the system parameters will have the
same impact on the load of a filer. Hence, we decompose the data collected into
volume parameters and non-volume system parameters. Each row in the data
set will be of the form:

Dj = Vsys + Vvoli

The above equation has essentially created x data instances for x volumes
through a single data request from the filer as a result of decomposition.

4.2 Response Forecaster

Forecasting the response time is important as rescheduling is based on the fore-
cast of response states for each filer/volume. Identifying the continuous high
load period is important for time-sharing among I/O intensive jobs to be effec-
tive. The entire data collection and data aggregation phase is explained in great
detail in [6]. I/O load is generated through real world or synthetic workload and
parallely traning data is collected for a prolonged period of time. Training data
essentially contains the set of filer performance parameters while writing bench-
mark data. When the I/O load is being generated time taken to write bench-
mark data and the performance parameters recorded during this write operation

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler Using Predictive Analytics 81

forms the dataset. Training data is pre-processed to identify the filer parame-
ters having high correlation with the response times. All parameters above a
correlation threshold will be used as features in Random Forest Regression to
build a model with smallest Out Of Bag (OOB) error rate [14]. Once the model
is successfully generated in the training phase, every new data instance gener-
ated in a live filer will be sent as input to the Random Forest Regression model.
The model will predict the possible response time, rout.

β = ws.
60
d

(5)

φ(β) =

⎧
⎪⎪⎨

⎪⎪⎩

−
⌊

β
3

⌋
if rout < rthreshold

1 if rout > rthreshold
(6)

A high response time threshold, rthreshold, will be used to predict a positive
value indicating high response time and a negative penalty if low response is
predicted as shown by the penalty function, φ(β). The values returned from
the penalty function, φ(β) is stored in a separate array for each volume, which
represents the window (w) with window size β. ws is the number of minutes to
be considered by the moving window. Any negative class prediction will have its
impact for 33 % of β instances as indicated by the penalty function. The value
of 33 % was arrived purely on the basis of experience and there is no theoretical
explanation for the same. The decay function defined by ψ(i) makes sure that the
most recent filer load is given higher preference. With every new instance, the
older negative predictions decay by a factor of 1. It is assured that the negative
prediction loses its weight after β

3 data instances. A decision on the overall state
of the volume can be concluded using the function (8).

ψ(i) =

{
ψ(i − 1) + 1 if ψ(i − 1) < 0
ψ(i − 1) otherwise

(7)

S(α, β) =

⎧
⎪⎨

⎪⎩
1 if

n−β∑

i=n

wi

β ≥ α

0 otherwise
(8)

S (α, β) evaluates to see if at least α of the past β data instances of a volume
has high load predicted by φ(β). If the function S (α, β) returns a 1, the algorithm
concludes that the volume is loaded for the past ws minutes. Response time (rout)
predicted by the model is treated as a time series data. Every minute, a short
term response time forecast is carried out using AR(q) autoregression model.
The duration of the forecast t, should be of the order of few minutes as this will
determine the number of minutes a suspended job will wait before a rescheduling
cycle (suspension/resumption of jobs) might restart. One of the criteria used by
the meta-scheduler to choose the best machine available to run a job is the load
on each server for 15 min (r15m). The windowing scheme helps to replicate the

prashant.anantharaman.gr@dartmouth.edu

82 K. Dheenadayalan et al.

same for ws minutes by considering the current response behavior along with
the recent response trend to conclude the load on the filer.

4.3 Job State Handler

Job state handler manages the state changes of all the jobs that have started
their execution and might be causing the load on the individual volumes of a
filer. A virtual queue is created for each individual volume of a filer to provide
a time-sharing system for all jobs accessing a loaded volume/filer. Each job will
have multiple processes associated with it and any of these processes can be
involved in some I/O operation. ‘jobDetail’ structure is extracted from Data
Extractor to build a structure called ‘runList’. A ‘runList’ structure per volume
helps maintain details of all jobs actively accessing or generating load on the
volume. runList is a hashtable data structure with filerName:volumeName as
key and a reference to stack data structure as the value. Each element of the
stack points to jobDetail structure. This stack maintains the list of jobs that
are in RUN state and accessing the volume to which the runList is associated.
Stack data structure is used to pick the most recent job (execution start time)
as a possible candidate for suspension.

List of suspended jobs are maintained in a separate hash called suspendList.
The suspendList structure is similar to runList except for the fact that a Queue
data structure is maintained for each filerName:volumeName key. Using queue
data structure facilitates implementing different SLA based priority schemes for
resuming jobs. The criterion for selecting the jobs for time-sharing by Storage
Load Controller can vary based on the understanding of the workload and the
Grid setup. Possible checks to identify if the running job is a candidate for
rescheduling are: (1) If the file was accessed or modified in the last 60 s to ensure
that we don’t choose a job for suspension that is not generating any I/O on the
volume. (2) A check on the size of the file to ensure that short jobs accessing
files of size less than ω can be ignored. (3) The number of open files is also
important (Load can also be generated when millions of small files are accessed
creating huge number of metadata operations [10]). (4) If the file size is not vary-
ing or not being accessed continuously, then jobs associated with such files are
ignored. Every volume is monitored and S (α, β) is evaluated at the beginning of
a rescheduling cycle. If S (α, β) returns 1 for any volume, then a job is popped
from the stack in runlist, pushed onto the queue of the suspendList and a sus-
pension request for this job is sent to the meta-scheduler. This ensures that the
oldest job that started accessing the volume will never be suspended. If S (α, β)
returns 0 for any volume, then a job from suspendList is pulled and pushed onto
the stack of the runlist and resume request is sent to the meta-scheduler. It must
be noted that, suspension is called only if there is more than one job associated
with each volume.

If any job jobq is suspended for accessing volume voli, then no job related to
voli will be resumed in the same rescheduling cycle. It helps to see the effect of
suspending jobq. Once the rescheduling cycle is completed, sleep signal is issued
for a time interval identified by Ψ(rforecastij

).

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler Using Predictive Analytics 83

Ψ(rforecastij
) =

{
t if ∃rforecastij

≥ rthreshold,∀i, j

1 otherwise
(9)

If the forecast for any voli is high for next t minutes, then the rescheduling
cycle will start after t minutes. If the forecast indicates that the volume load
for any volume is going to reduce over a period of next t minutes, then the
rescheduling cycle will start after 1 min. Ψ(rforecastij

) makes sure that the sus-
pended jobs don’t spend their time in suspended state even after the load on
the volume has come down.

5 Results

Storage Load Controller was developed using C programming language for job
state handler, PERL for Data Extractor and R statistical package for Response
Forecaster. The test setup includes a NetApp ONTAP 8 filer with Dual 2.8 GHz
Intel P4 Xeon MP processor, 2 MB L3 cache, 8 GB of main memory and 512 MB
NVRAM. Three servers with quad core processors and 4 GB of RAM as execu-
tion hosts. One single core machine is used to run the proposed Storage Load
Controller. LSF version 9.1 was used as the meta-scheduler with its default FCFS
scheduling algorithm enabled. A new queue was defined to test Backfilling algo-
rithm. Total of 12 slots were configured with each core taking up one slot. We
present the results obtained by executing two different workloads with/without
Storage Load Controller in action. DS1, DS2 and DS3 are the identifiers for the
datasets used in our experiments. DS1 consists of 6 jobs having 2 CPU inten-
sive jobs and 4 I/O intensive jobs. Table 1 gives details of the type of jobs in
each dataset. The ratio of CPU intensive versus I/O intensive jobs was chosen
based on the trend observed in EDA industry workload. I/O intensive jobs had
a combination of EDA workload (20 jobs), metadata intensive jobs generated
using PostMark (12 jobs) [10], I/O benchmark applications like IOZONE (16
jobs) [16]. DS2 follows Poisson’s arrival distribution with hyper-exponential ser-
vice time distribution. DS3 was generated by using DS2 as the population and
random sampling was carried out with no bias towards any type of job.

Different types of I/O operations were tested specially using the industry
workload and IOZONE tool. PostMark was used to test the behaviour of the
storage filer towards jobs working with 10,000 to 10 million short files of less than
256 KB. The amount of data by non-PostMark jobs ranged from 10 GB to 100 GB
each. Storage Load Controller is combined with FCFS and Backfilling separately
and we compare the results in Table 1. The values of various parameters set for
the experiments carried out are: d → 10 s; rthreshold → 60 s; β → 18; ws →
3 min; α → 0.75; t → 3 min; p → 1 GB; ω → 4000 MB; The key parameters
that have a major impact on the success of Storage Load Controller are the
values of rthreshold and t. Setting a low value for rthreshold and t will force
frequent job suspensions which is detrimental to the performance of the Storage
Load Controller. DS2 considered in the current experiment were run with four
different values of t. For t = 1 and 5 min, Storage Load Controller performed

prashant.anantharaman.gr@dartmouth.edu

84 K. Dheenadayalan et al.

Table 1. Performance Measure (unit - hh:mm:ss)

Dataset Size CPU I/O Prediction (%) Total Completion Time Total Flow Time

ID Jobs Jobs for t mins

FCFS Controller FCFS Controller

DS1 6 2 4 94.2% 15:35:27 12:51:16 15:35:34 12:51:23

DS2 152 104 48 92.0% 256:06:14 235:57:28 298:28:12 274:24:14

DS3 21 13 8 93.4% 63:26:42 57:58:39 67:11:32 61:03:05

Backfill Controller Backfill Controller

DS2 152 104 48 91.1% 314:12:18 295:16:17 345:33:11 323:02:10

DS3 21 13 8 92.3% 65:12:12 60:14:55 69:03:22 62:33:54

Fig. 1. Gantt chart for time-sharing process

Fig. 2. Completion Time for LSF FCFS with/without Storage Load Controller

worse than LSF scheduling by 2.4 % and 6.4 % respectively. For t = 2 and 3 min,
Storage Load Controller performed better than LSF scheduling by 5.7 % and
7.8 % respectively. t should be set to high values (2 to 5 min) when I/O intensive
jobs are expected to have a runtime of few hours. Short I/O intensive jobs might
run to completion with limited effect on the completion time of the job.

To show the importance of time-sharing, a Gantt chart is presented in Fig. 1.
It shows the suspension and resume cycles of individual jobs which share I/O
bandwidth among themselves. Jobs 4 and 5 are CPU intensive jobs, which do
not access any files on the filer. Jobs 1–3 and 6 are I/O intensive jobs, involved
in read, write, reread and rewrite operations of various file sizes ranging from
10 GB to 100 GB. Job 1 is the first I/O intensive job to get a slot and it executes

prashant.anantharaman.gr@dartmouth.edu

Storage Load Control Through Meta-Scheduler Using Predictive Analytics 85

to completion because start time is used as the measure of priority. Other jobs
are time shared till they become the oldest running jobs accessing the volume on
the filer. Other forms of priority can also be used to change the suspension order
based on the SLA that needs to be implemented. Figure 2 shows the completion
time comparison of FCFS with/without Storage Load Controller. It is evident
that Storage Load Controller affects no CPU intensive job but completion of
I/O intensive jobs has improved.

Table 1 shows the performance comparison in terms of Total Completion
Time and Total Flow Time for FCFS, Backfill, FCFS with Load Controller and
Backfill with Load Controller. Early completion of I/O jobs has a direct effect
on the total flow time of all jobs. Storage Load Controller is able to complete
the tasks much earlier than FCFS/Backfill scheme. As more I/O jobs complete
early, it enables early start for other waiting jobs. For DS2, more than 20+ h
of compute time is gained by Storage Load Controller when compared to FCFS
and an average gain of 25 min per I/O intensive job. 18+ h of compute time
gain with an average gain of 22 min was observed for the same dataset was
observed for Backfilling algorithm with Storage Load Controller. Storage Load
Controller doesn’t have any dependency on the order of job submission. As the
framework tries to control the load generated by running jobs, we continue to
see improvements in the job completion times and flow times. Since we have
specific checks in Job State Handler to omit CPU intensive and small I/O jobs,
the system is able to take all CPU intensive jobs to completion without affecting
other I/O intensive jobs.

6 Conclusion

The major objective of maintaining the load on the storage system is achieved
through Storage Load Controller. Response time to write benchmark data is kept
under rthreshold throughout the schedule. This leads to faster overall completion
times and hence the faster flow times. Storage Load Controller being at a level
above the meta-scheduler can be integrated with any meta-scheduler that is using
a variety of algorithms. Our work presents the results for FCFS and Backfill but
the same can be extended to any scheduling algorithm. Order of job suspension
can be improved for Backfilling as the runtime is provided in advance which will
be part of our future work. The Suspend and Resume order in the Job State
Handler module can be changed by implementing various priority schemes which
gives the framework a better chance to succeed in various environments.

References

1. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with
immediate dispatching. Algorithmica 47(3), 253–268 (2007)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. CERN: European Laboratory for Particle Physics (2014). http://home.web.cern.

ch/about/computing. Accessed 30 September 2014

prashant.anantharaman.gr@dartmouth.edu

http://home.web.cern.ch/about/computing
http://home.web.cern.ch/about/computing

86 K. Dheenadayalan et al.

4. Chen, J., Zhou, B.B., Wang, C., Lu, P., Wang, P., Zomaya, A.: Throughput
enhancement through selective time sharing and dynamic grouping. In: 2013 IEEE
27th International Symposium on Parallel Distributed Processing (IPDPS), pp.
1183–1192 (2013)

5. Choudhury, B.R.: IBM Platform Load Sharing Facility (LSF) Integration with
Netapp Storage. Technical report (2013)

6. Dheenadayalan, K., Muralidhara, V., Datla, P., Srinivasaraghavan, G., Shah, M.:
Premonition of storage response class using skyline ranked ensemble method. In:
2014 21st International Conference on High Performance Computing (HiPC), pp.
1–10, December 2014

7. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco (1999)

8. Gulati, A., Kumar, C., Ahmad, I., Kumar, K.: BASIL: Automated IO load bal-
ancing across storage devices. In: Proceedings of the 8th USENIX Conference on
File and Storage Technologies, FAST 2010, p. 13. USENIX Association, Berkeley
(2010)

9. Hameed, S.: Integrating lsf storage-aware plug-in with operations manager. Tech-
nical report (2011)

10. Katcher, J.: PostMark: A New File System Benchmark. Technical report (1997)
11. Kosar, T.: A new paradigm in data intensive computing: stork and the data-aware

schedulers. In: 2006 IEEE Challenges of Large Applications in Distributed Envi-
ronments, pp. 5–12 (2006)

12. Kunkle, D., Schindler, J.: A load balancing framework for clustered storage sys-
tems. In: Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2008. LNCS, vol. 5374, pp. 57–72. Springer, Heidelberg (2008)

13. Liang, H., Faner, M., Ming, H.: A dynamic load balancing system based on data
migration. In: Proceedings of the 8th International Conference on Computer Sup-
ported Cooperative Work in Design, vol. 1, pp. 493–499, May 2004

14. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18–22 (2002)

15. Mondal, A., Goda, K., Kitsuregawa, M.: Effective load-balancing via migration and
replication in spatial grids. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.)
DEXA 2003. LNCS, vol. 2736, pp. 202–211. Springer, Heidelberg (2003)

16. Norcott, W., Capps, D.: IOzone file system benchmark. Technical report (2006)
17. Quintero, D., Denham, S., Garcia da Silva, R., Ortiz, A., Guedes Pinto, A.,

Sasaki, A., Tucker, R., Wong, J., Ramos, E.: IBM Platform Computing Solutions
(IBM Redbooks). IBM Press (2012)

18. Thompson, S., Lipsky, L., Tasneem, S., Zhang, F.: Analysis of round-robin imple-
mentations of processor sharing, including overhead. In: Eighth IEEE International
Symposium on Network Computing and Applications, NCA 2009, pp. 60–65 (2009)

19. Venkataraman, S., Panda, A., Ananthanarayanan, G., Franklin, M.J., Stoica, I.:
The power of choice in data-aware cluster scheduling. In: Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2014, pp. 301–316. USENIX Association, Berkeley (2014)

20. Wei, X., Li, W.W., Tatebe, O., Xu, G., Hu, L., Ju, J.: Implementing data
aware scheduling in Gfarm(r) using LSFTM scheduler plugin mechanism. In:
Arabnia, H.R., Ni, J. (eds.) GCA, pp. 3–10. CSREA Press (2005)

21. Zhang, F., Tasneem, S., Lipsky, L., Thompson, S.: Analysis of round-robin vari-
ants: favoring newly arrived jobs. In: Proceedings of the 2009 Spring Simulation
Multiconference, SpringSim 2009 (2009)

prashant.anantharaman.gr@dartmouth.edu

A Distributed Approach Based on Maximal Far-Flung
Scalar Premier Selection for Camera Actuation

Sushree Bibhuprada B. Priyadarshini and Suvasini Panigrahi(✉)

Veer Surendra Sai University of Technology, Burla, Sambalpur, India
bimalabibhuprada@gmail.com, spanigrahi_cse@vssut.ac.in

Abstract. The article proposes a distributed approach inspired by maximal far-
flung scalar premier selection for actuation of cameras. This manner of scalar
premier selection reduces the possible overlapping among the field of views of
cameras, thereby minimizing the amount of redundant data transmission due to
it. The scalar premiers communicate their corresponding cameras regarding the
occurring event information and the cameras collaboratively decide which among
them are to be actuated. Experimental results obtained from the investigation
validate the significance of our proposed algorithm as compared to three other
methods proposed in the literature.

Keywords: Scalar premier · Field of view · Depth of field · Sub-compartment ·
Far-flung

1 Introduction

In this advanced era of rapid technological proliferation, the popularity of sensor
networks is predominantly due to their diversified spectrum of applications resulting in
several challenges. The principal challenge in sensor network is how to have an adequate
coverage of the monitored region, while minimizing the amount of redundant data
transmission. This redundant data transmission takes place due to overlapping of Field
of View (FOV) angles of cameras [1]. The scalars present at the overlapping regions
communicate the same event information to cameras, resulting in redundant transmis‐
sion. Generally, cameras are kept in off state whereas the scalars are kept in on condition.
The cameras are turned on; whenever an event is detected by them. In “Distributed
collaborative camera actuation based on scalar count (DCA-SC) the cameras collabo‐
ratively decide which among them are to be actuated [1]. Further, another work called
Distributed collaborative camera actuation scheme based on sensing region manage‐
ment (DCCA-SM) given in [2] activates the cameras based on their remaining energy.
A Non-heuristic (N-H) approach [3] keeps the cameras which are activated due to
sensing of event in off condition. The idea of cover-set in [4] helps in monitoring all the
targets in an area.

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 87–91, 2016.
DOI: 10.1007/978-3-319-28034-9_10

prashant.anantharaman.gr@dartmouth.edu

2 Problem Analysis and Proposed Approach

Although several approaches have been devised, but always a tradeoff exists between
the portions of area covered by activated cameras and the amount of redundant trans‐
mission. Hence, our objective is to activate minimum number of cameras to provide
improved coverage of event region, while minimizing the amount of redundant data
transmission. In this paper, we have devised a distributed algorithm called Maximal
Far-Flung Scalar Premier Selection for Camera Actuation (MFSPS-CA) that actuates
reduced number of cameras, which are required to afford better coverage of the occurring
event while minimizing the amount of redundant data transmission. This is achieved by
the selection of maximal far-flung scalar premiers (SPs) for camera activation. Such
selection of SPs is done in such a way that the cameras activated can cover more distinct
portions of the occurring event region.

Fig. 1. Event detection and camera actuation

Initially, all the sensors are randomly sprinkled. Each scalar and camera broadcast
My Scalar Information Message (MSIM) and My Camera Information Message (MCIM)
respectively. These messages contain the id and location information of concerned
sensors. Afterwards, the sensors calculate the Euclidian distance (ED) between itself
and other sensors individually. If the ED value for a scalar and a camera is less than the
depth of field (DOF) of the camera then the scalar lies within the purview of camera.

88 S.B.B. Priyadarshini and S. Panigrahi

prashant.anantharaman.gr@dartmouth.edu

Subsequently, the monitored region is divided into a number of sub-compartments in
such a manner that the side length of each sub-compartment is one tenth of the length
of monitored region (500 m in our context). In each of the sub-compartments a scalar
premier called Primary Scalar Premier (PSP) is selected so that it has the minimal mean
distance among all the scalars belonging to that sub-compartment. The scalar having
maximum distance from the PSP is then chosen as the Succeeding Scalar Premier (SSP)
of concerned sub-compartment.

Whenever, any event takes place, SPs detect the event and they broadcast Detect
Message (DM) containing event information and their respective ids. All the cameras
maintain their respective event detecting SP ids in a list called Event Reporting Scalar
Premier List (ERSPL). Each camera calculates the sum of event reporting SPs present
within their FOVs called event reporting scalar premier sum (ER-SPS) value. If ER-
SPS = 1, then add camera id to Single Premier Camera List (SPCL), otherwise add id
of camera to Multi Premier Camera List (MPCL). Initially, the camera that comes first
in MPCL is activated first and its id is added to ACTIVATION list. The activated camera
broadcasts Update Scalar Premier (USP) message containing the ids of SPs present
within its DOF [1]. The ids of SPs present in USP message of activated camera is added
to Update Message id List (UM-IDL). Rest of the cameras present in MPCL make deci‐
sion for actuation by comparing the SP ids present in their ERSPL list with SP ids present
in USP message (s) sent by activated camera (s). If at least a single mismatch is found
concerned camera is to be activated. Afterwards, the cameras present in SPCL compare
their SP ids present in their ERSPL list with SP ids present in updated UM-IDL list. If
a mismatch is noticed concerned camera is activated. The updated ACTIVATION list
contains the ids of activated cameras. A scenario of scalar premier selection and camera
actuation is portrayed in Fig. 1.

3 Implementation and Performance Evaluation

The MFSPS-CA approach has been compared with three approaches namely: DCA-SC
[1], DCCA-SM [2] and N-H [3]. We have varied the number of cameras (noc) and
observed its effect on the four parameters: (a) number of cameras activated (noca) (b)
coverage ratio (cr) [1] (c) redundancy ratio (rr): rr is the ratio of total portions of over‐
lapping areas of FOVs of activated cameras covering the event region to the total unique
portions of the occurring event region (d) power consumption for camera activation
(pcca). It is evident from Fig. 2(a) that with an increasing noc the noca increases in all
the approaches and it is minimum in MFSPS-CA. Hence, pcca is lowest in our case as
shown in Fig. 2(b). Similarly, rr and cr are obtained as minimum and maximum in
MFSPS-CA as shown in Fig. 3(a) and (b) respectively.

A Distributed Approach Based on Maximal Far-Flung Scalar Premier Selection 89

prashant.anantharaman.gr@dartmouth.edu

Fig. 2. Effect of varying number of cameras (noc) on (a) noca (b) pcca (watt)

Fig. 3. Effect of varying number of cameras (noc) on (a) rr (b) cr

4 Conclusions

The results obtained from the investigation justifies the effectiveness of our proposed
MFSPS-CA approach in terms of reduced camera activation, minimized redundancy ratio,
increased coverage ratio as well as lesser power consumption in case of proposed approach.

References

1. Newell, A., Akkaya, K.: Distributed collaborative camera actuation for redundant data elimination
in wireless multimedia sensor networks. Ad Hoc Netw. 9(4), 514–527 (2011). Elsevier

2. Luo, W., Lu, Q., Xiao, J.: Distributed collaborative camera actuation scheme based on sensing-
region management for wireless multimedia sensor networks. International Journal of
Distributed Sensor Networks 2012, Article ID 486163 (2012). doi:10.1155/2012/486163,
Hindawi Publishing Corporation

90 S.B.B. Priyadarshini and S. Panigrahi

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1155/2012/486163

3. Priyadarshini, S.B.B., Panigrahi, S.: A non-heuristic approach for minimizing the energy and
power consumption in wireless multimedia sensor networks. In: International Conference on
Computational Intelligence and Networks (CINE), Bhubaneswar, 12-13 January 2015, pp.
104–109. IEEE (2015). doi:10.1109/CINE.2015.29

4. Zorbas, D., Glynos, D., Kotzanikolaou, P., Douligeris, C.: Solving coverage problems in
wireless sensor networks using cover sets. Ad Hoc Netw. 8(4), 400–415 (2010). Elsevier
Science Publishers

A Distributed Approach Based on Maximal Far-Flung Scalar Premier Selection 91

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1109/CINE.2015.29

An Extension to UDDI for the Discovery of User Driven
Web Services

Anu Saini(✉)

Maharaja Surajmal Institute of Technology, New Delhi, India
drsainianu@gmail.com

Abstract. Service registries are used by web service providers to publish serv‐
ices and registries are used by requestors to find them in an SOA (Service Oriented
Architecture). The following drawbacks are presented in the main existing service
registry specifications, UDDI (Universal Description, Discovery and Integration).
First, only abstract, unscalable and inefficient definition of the web services
publications is present in all UBR (Universal Business Registry) nodes. Second,
it matches only the business name and service name given in the WSDL document
to collect service information. In order to overcome these difficulties, author have
proposed an efficient and effective UDDI architecture called E-UDDI, which
extends the UDDI design by incorporating a QoS in additional bag in the business
entity data structure. Moreover, to enable service customer for easily finding more
appropriate service information, an effective service matching mechanism is
adopted in the E-UDDI so that the user can take the decisions. Service discovery
and publishing is improved considerably in the proposed system by means of an
effective UDDI registry with flexible and more suitable service searching facility.

1 Introduction

A major turn in the industry for loosely linked service-oriented architecture and intero‐
perable solutions over heterogeneous platforms and systems is the web service. From
industries and standard bodies, it has received outstanding attention and adoption [1–10].
For dependable service invocation and event notification between two endpoints, the two-
way web service interaction ought to have its Service Local Registry that reveals the
WSDL interfaces of both the server and the client [11].

The two significant registries employed by the majority of people today are UDDI
(Universal Description Discovery and Integration) and ebXML. For facilitating busi‐
nesses to quickly, easily, and dynamically discover web services and interact with each
other, an industrial initiative known as UDDI [12] is employed which, creates an
Internet-wide network of registries of web services. [13] UDDI permits businesses to
register their presence on the web. A set of Application Programming Interfaces (APIs)
is being offered by UDDI, which can be employed to publish or explore information
stored within the directory [14]. Most significantly, the information about the technical
interfaces of a business’s services is available in UDDI. To determine technical data,
such that those services can be cited and employed one can interrelate with UDDI at
both design time and run time through a set of SOAP-based XML API calls [15–18].

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 92–96, 2016.
DOI: 10.1007/978-3-319-28034-9_11

prashant.anantharaman.gr@dartmouth.edu

In this paper, we have made some extension to the standard UDDI, called as E-UDDI
which is designed by adding QoS for user driven query. Here QoS contains information
of each web services in detail and it is stored in an additional bag to the business entity
data structure [19].

2 Review of Related Research

Literature presents a lot of researches related to the use of UDDI registry, which
plays an important role in helping requesters to find suitable web services. In recent
times, the extension of UDDI registry has received significant interest among the
researchers [20–26].

3 Proposed System Architecture for User Driven Web Service
Registry and Discovery

In general, the web service provider and the user find some difficulties in UDDI usage
due to its incapability in providing certain functionalities. Some of the limitations when
we find and publish the web services in UDDI are described as follows. (1) UDDI in its
current form is limited to three pages such as, yellow, green and white page. (2) The
web service document gives only the abstract definition of the web services. (3) Only
within business name, service name, service category and tModel restricted searching
facilities are offered by the UDDI. (4) Based on user specified conditions web services
are directly matched by the UDDI.

In order to overcome these difficulties, we have developed an E-UDDI registry that
provides the following advantages compared to the standard UDDI-registry. (1) It
contains QoS to describe the specific features and properties. (2) The detailed description
of the web services is defined in additional bag. (3) The searching facility given by the
proposed work is extended to additional bag. The proposed system architecture for user
driven web service registry and discovery is shown in Fig. 1.

3.1 E-UDDI Data Model

Along with certain specific QoS related with business, businesses and web services are
described in an XML schema by the E-UDDI data model. The choice of XML is because
it offers platform-neutral view of data and permits natural way of describing hierarchical
relationships. In E-UDDI data model, the core information regarding businesses and
web services are organized as four different data structures. Each data structure within
an E-UDDI registry is allocated a Universally Unique ID (or “key”, also called UUID).
The entire information given in the E-UDDI data model is theoretically signified into
four elements such as, white page, yellow page, green page and additional page. The
additional page contains the detailed description of the web services specified with QoS
attributes.

An Extension to UDDI for the Discovery 93

prashant.anantharaman.gr@dartmouth.edu

3.2 Service Publishing and Discovery

This section describes the process of publishing web services with QoS in the E-UDDI
registry and discovery of web services from the E-UDDI registry based on the user
specified QoS attributes.

3.2.1 Service Publishing Phase
During the service publishing phase, an E-UDDI is used to update the specified QoS of
the services. To update the Additional bag into the E-UDDI registry, we have used the
save _QoS API which, is newly designed in the proposed work by exploiting the SOAP
protocol. At first, SOAP message with empty additional bag is sent to the service
provider and they submit the QoS in the SOAP message. Then, these specific QoS are
stored as WSDL document in the E-UDDI registry. The updated QoS in the registry are
named as additional bag. In order to enable the user to easily get the fully satisfied
services from the common repository additional bag is used.

3.2.2 Service Discovery Phase
The service discovery phase uses QoS based retrieval of web services as an improvement
over the standard API. Accordingly, the user can locate their QoS query to discover a
set of services that satisfies the given QoS list. For matching the given QoS query with
the QoS specified in the E-UDDI registry, the following two mechanisms are used.
E-UDDI Matching Mechanism: Here, we have used two types of matching mechanism
such as (1) Complete_QoS_detail (2) Fraction_ QoS_detail. Through the use of this, the
QoS query given by the service customer is matched with the Additional bag of every
WSDL document in the E-UDDI registry.

Service
provider

Service
consumer

2. Find service according to
QoS (SOAP Message)

E-UDDI Registry

1. Publish service
(SOAP Message)

Service reply

E-UDDI directory
with WSDL
Documents

Web

Request service

3. Found service +QoS

Fig. 1. Proposed system architecture for web service registry and discovery

94 A. Saini

prashant.anantharaman.gr@dartmouth.edu

4 Conclusion

The proposed system architecture is an effective implementation of web service registry
and an effective retrieval of web services based on the user’s interest. The proposed
system published all the web services in their public registry by obtaining all the service
information from the service provider. The service information contained in the public
registry was written in a WSDL document and it additionally, included the specific QoS
of each web services. The published web services with its QoS were utilized to match
the query QoS given by the user. If the given query QoS was exactly matched with the
WSDL documents, the matched results are given to the user with its access information.
Otherwise, the partially matched web services are given to the user, so that the user can
select suitable web services after his/her own interest. The experimental results ensured
that the proposed system provides fine-grained web services to the user by matching
their input QoS.

References

1. Feng, L., Chou, W., Li, L., Li, J.: WSIP – web service SIP endpoint for converged multimedia/
multimodal communication over IP. In: Proceedings of the IEEE International Conference
on Web Services (ICWS 2004), San Diego, California, USA, 6–9 June, pp. 690–697 (2004)

2. Haines, M.: Web service as information systems innovation: a theoretical framework for web
service technology adoption. In: Proceedings of the IEEE International Conference on Web
Services (ICWS 2004), San Diego, California, USA, 6–9 June, pp. 11–16 (2004)

3. Muhammad, M., Bin, T., Toshiro, K.: Introducing dynamic distributed coordination in web
services for next generation service platform. In: Proceedings of the IEEE International
Conference on Web Services (ICWS 2004), San Diego, California, USA, 6–9 June, pp. 296–
305 (2004)

4. Vidyasankar, K., Vossen, G.: A multi-level model for web service composition. In:
Proceedings of the IEEE International Conference on Web Services (ICWS 2004), San Diego,
California, USA, 6–9 June, pp. 462–469 (2004)

5. Jinghai, R., Peep, K.: Logic-based web services compositions: from service description to
process model. In: Proceedings of the IEEE International Conference on Web Services (ICWS
2004), San Diego, California, USA, 6–9 June, pp. 446–453 (2004)

6. Caromel, C., di Costanzo, A., Gannon, D., Slominski, A.: Asynchronous peer-to-peerweb
services and firewalls. In: Proceedings of the 19th IEEE International Conference on Parallel
and Distributed Symposium, Denver, CA, USA, 4–8 April, p. 1 83a (2005)

7. Standard ECMA-348: Web Services Description Language (WSDL) for CSTA Phase III, 2nd
edn., June 2004

8. ECMA TR-90: Session Management, Event Notification, and Computing Function
Services - an amendment to ECMA-348, ECMA International, December 2005

9. Eyhab, A., Qusay, H.M.: Investigating web services on the world wide web. In: Proceeding
of the 17th International Conference on World Wide Web, Beijing, China, pp. 795–804 (2008)

10. Feng, L., Gesan, W., Li, L., Wu, C.: Web service for distributed communication systems. In:
Proceedings of the IEEE International Conference on Service Operations and Logistics, and
Informatics (SOLI 2006), Shanghai, China, pp. 1030–1035 (2006)

An Extension to UDDI for the Discovery 95

prashant.anantharaman.gr@dartmouth.edu

11. Feng, L., Gesan, W., Wu, C., Lookman, F., Li, L.: TARGET: two-way web service router
gateway. In: IEEE International Conference on Web Services (ICWS 2006), pp. 629–636
(2006)

12. Oasis Consortium: UDDI the UDDI Technical White Paper (2000). http://www.uddi.org
13. Naveen, S., Massimo, P., Sycara, K.: Semantic web service discovery in the OWL-S IDE. In:

Proceedings of the 39th Annual Hawaii International Conference on System Sciences, vol.
6, p. 109b (2006)

14. Jeckle, M., Zengler, B.: Active UDDI - an extension to UDDI for dynamic and fault-tolerant
service invocation. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS
2002. LNCS, vol. 2593, pp. 91–99. Springer, Heidelberg (2003)

15. Karsten, J.: Web Service Description and Discovery Using UDDI, Part I. Microsoft
Corporation, 3 October 2001

16. Hartwig, G.: Introduction to Web Services. Borland, March 2002
17. Sheng, Q., Benatallah, B., Stephan, R., Oi-Yan Mak, E., Zhu, Y.Q.: Discovering e-services

using UDDI in SELF-SERV. In: Proceedings of the International Conference on E-Business,
Beijing, China, May 2002

18. David, C., Tyler, J.: Java web services, 1st edn., pp. 1– 276. O’Reilly, Sebastopol (2002).
ISBN: 0-596-00269-6

19. Parimala, N., Anu, S.: Web service with criteria: extending WSDL. In: 2011 Sixth
International Conference on Digital Information Management (ICDIM). IEEE (2011)

20. Du, Z., Huai, J.-P., Liu, Y.: Ad-UDDI: an active and distributed service registry. In: Bussler,
C.J., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 58–71. Springer, Heidelberg (2006)

21. Edgardo, A., Marco, B., Carlo, G., Giorgio, G., Flavio, L.: Extending the UDDI API for
service instance ranking. In: Proceedings of the International Symposium on Web Services,
Las Vegas, Nevada, USA, June 2005

22. Powles, A., Krishnaswamy, S.: Extending UDDI with recommendations: an association
analysis approach. In: Proceedings of 19th International Conference on Advanced
Information Networking and Applications, vol. 2, pp. 715–720 (2005)

23. Matjaz, B.J., Ana, S., Bostjan, B., Ivan, R.: WSDL and UDDI extensions for version support
in web services. J. Syst. Softw. 82(8), 1326–1343 (2009)

24. Zhang, M., Cheng, Z., Zhao, Y., Huang, J.Z., Li, Y., Zang, B: ADDI: an agent-based extension
to UDDI for supply chain management. In: Proceedings of the Ninth International Conference
on Computer Supported Cooperative Work in Design, Shanghai, China, vol. 1, pp. 405– 410
(2005)

25. Huimin, H., Haiyan, D., Dongxia, H., Yuemei, H.: Research on the models to customize
private UDDI registry query results. In: Proceedings of 3rd International Conference on
Innovative Computing Information and Control, ICICIC, Dalian, Liaoning, 22 August, p. 205
(2008)

26. Xiang, L., Lin, L., Lei, X.: I-UDDI4 M: improved UDDI4 M protocol, vol. 259, pp. 859–
866. Springer, Boston (2008). 978-0-387-77252-3

96 A. Saini

prashant.anantharaman.gr@dartmouth.edu

http://www.uddi.org

Long Wire Length of Midimew-Connected
Mesh Network

M.M. Hafizur Rahman1(B), Rizal Mohd Nor1, Md. Rabiul Awal1,
Tengku Mohd Bin Tengku Sembok2, and Yasuyuki Miura3

1 DCS, KICT, IIUM, 50728 Kuala Lumpur, Malaysia
{hafizur,rizalmohdnor}@iium.edu.my

2 Cyber Security Center, UPNM, 57000 Kuala Lumpur, Malaysia
tmtsembok@gmail.com

3 Graduate School of Technology, SIT, Fujisawa, Kanagawa, Japan
miu@info.shonan-it.ac.jp

Abstract. Minimal DIstance MEsh with Wrap-around links (Midimew)
connected Mesh Network (MMN) is a hierarchical interconnection net-
work consists of several Basic Modules (BM), where the BM is a
2D-mesh network and the higher level network is a midimew network. In
this paper, we present the architecture of MMN and evaluate the num-
ber of long wires, length of a long wire, and the total length for the long
wire of MMN, TESH, and torus networks. It is shown that the proposed
MMN possesses simple structure and moderate wire length. The long
wire length of MMN is slightly higher than TESH network and far lower
than that of 2D torus network. Overall performance suggests that, MMN
is a good choice for future generation massively parallel computers.

Keywords: Massively parallel computers · Interconnection network ·
MMN · Long wire length

1 Introduction

The demand for computation power is increasing rapidly and found as constant
over the last half century. Massively parallel computer (MPC) is introduced to
meet this increasing demand. Nevertheless, the scaling of MPC is increasing as
well. In nearby future, MPC will contain 10 to 100 millions of nodes [1] in a
single system with computing capability at the exaflops level. In MPC, intercon-
nection network dominates the system performance [2]. In relation, hierarchical
interconnection network (HIN) is a plausible alternative way to interconnect the
future generation MPC systems [3]. However, the performance of already pro-
posed HIN does not yield an ultimate choice of a network for MPC. Among a lot
of HINs, several k-ary n-cube based HIN proposed [4,5] for good performance.

Small transistor size and its greater density make the MPC with millions of
nodes using VLSI and NoC technology. Hence, the functionality becomes more
complex of an MPC system with the shrinking geometry. As a matter of fact,

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 97–102, 2016.
DOI: 10.1007/978-3-319-28034-9 12

prashant.anantharaman.gr@dartmouth.edu

98 M.M.H. Rahman et al.

interconnection network becomes the steering point, in the context of power dis-
sipation and cost. In an MPC system, more than 50 % of total power dissipated
by the interconnection network and the cost of MPC is related to the communi-
cation links of the network. Hence, the network is wire limited on a VLSI surface.
Wire length determines the communication delay of the network [6]. Among the
total wire length long wire is also a determining factor. It occupied significantly
the allocated wire area for a network on a VLSI surface. Total wire length of net-
work indicates the average locality of links of the network. Therefore long wire
length is an influential factor for the interconnection network to be implemented
in a VLSI plane.

MMN [7] was proposed to improve performance of fixed degree network while
keeping short diameter which is still desirable [8]. BM of MMN is 2-D mesh
and higher level network are midimew network. Hence, MMN offers simple and
hierarchical structure and this translate to the ease of VLSI implementation.
The main focus of this paper is to explore the long wire length of a MMN for
VLSI implementation. We compare the number of long wire and length of long
wire for the several degree 4 networks.

The remainder of the paper is organized as follows. In Sect. 2, we present
the basic architecture of the MMN. Long wire length evaluation is discussed in
Sect. 3. Finally, in Sect. 4 we conclude this paper.

2 Architecture of the MMN

Midimew connected Mesh Network (MMN) is a HIN, where multiple basic mod-
ules (BM) are hierarchically interconnected to form a higher level network of
MMN. BM is the basic building blocks of MMN and it is a 2D-mesh network of
size (2m × 2m). BM consists of 22m processing elements (PE). PEs are arranged
in 2m rows and 2m columns. Considering m = 2, a BM of size (4 × 4) is por-
trayed in Fig. 1. Each BM has 2(m+2) free ports at the contours for higher level
interconnection. All Intra-BM links are done by free ports of the interior nodes.
All free ports of the exterior nodes, either one or two, are used for inter-BM links
to form higher level networks. In this paper, BM refers to a Level-1 network.

Successive higher level networks are built by recursively interconnecting 22m

immediate lower level sub-networks in a (2m × 2m) midimew network. As por-
trayed in Fig. 2, considering (m = 2) a Level-2 MMN can be formed by inter-
connecting 2(2×2) = 16 BMs. Similarly, a Level-3 network can be formed by
interconnecting 16 Level-2 sub-networks, and so on. Each BM is connected to
its logically adjacent BMs. It is useful to note that for each higher level inter-
connection, a BM uses 4 × (2q) = 2q+2 of its free links, 2(2q) free links for
diagonal interconnections and 2(2q) free links for horizontal interconnections.
Here, q ∈ {0, 1,,m},, is the inter-level connectivity. q = 0 leads to minimal
inter-level connectivity, while q = m leads to maximum inter-level connectivity.

A MMN(m,L, q) is constructed using (2m×2m) BMs, has L levels of hierarchy
with inter-level connectivity q. In principle, m could be any positive integer.
In this paper, we focus on a class of MMN(2,L,q) networks. The highest level

prashant.anantharaman.gr@dartmouth.edu

Long Wire Length of MMN 99

3,0 3,3

0,0 0,3

2,3

1,31,0

2,0

3,1 3,2

2,1 2,2

1,1 1,2

0,1 0,2

D tuo_3 5D tuo_D tuo_2 4D_out

2D_in 3D_in5D_in4D_in

Free ports for higher

Fig. 1. Basic Module of MMN

(Midimew)

(MESH)

(Midimew)

Basic Module

Fig. 2. Higher Level Networks of MMN

network which can be built from a (2m×2m) BM is Lmax = 2m−q +1 with q = 0
and m = 2, Lmax = 5, Level-5 is the highest possible level. The total number of
nodes in a network having (2m × 2m)) BMs is N = 22mL.

3 Long Wire Length Evaluation

In our previous study, we have evaluated the total wire length of a MMN
along with the other networks in a 2D-planar implementation [9]. The wire
length is evaluated using 45 nm technology. And according to 45 nm technol-
ogy, the tile height is 5.2 mm and tile width is 3.6 mm [10]. Each node of an
interconnection network is in one tile of a VLSI implementation. And wire

prashant.anantharaman.gr@dartmouth.edu

100 M.M.H. Rahman et al.

length depends on the tile size. We have considered horizontal and vertical
direction to evaluate the total wire length. Here the wire length in horizon-
tal and vertical direction depends on tile width and height, respectively. Wire
length between two particular nodes is the number of tiles needs to pass to
interconnect the nodes. Therefore, wire length between two nodes in horizontal
direction is the product of number of tiles needs to be passed and tile width.
Similarly for vertical direction, wire length is the product of number of tiles
needs to be passed and tile height. Consequently, total wire required to con-
nect all the nodes of a network is the number of total tiles needs to be passed
and can be expressed as, Wire Length = Tile distanceX + Tile distanceY and
Tile distance = # of tiles × # of groups. Here # of groups indicate the total
number of similar communication links.

Considering 45 nm CMOS 5.2 mm × 3.6 mm tile [10], the wire length between
two neighboring nodes in horizontal direction is 3.6 mm and for vertical direction
is 5.2 mm. Total wire length is evaluated using the wire length required for BM
and the inter-BM link length for higher level networks. The wire length of a
BM is 105.6 mm which yields 1689.6 mm for 16 BMs. As portrayed in Fig. 2, 4
diagonal links and 4 horizontal wrap-around links are the long wire of an MMN.
For the TESH network 4 vertical and 4 horizontal wrap-around links are the long
wire. For a 16×16 torus network, 16 vertical wrap-around links and 16 horizontal
wrap-around links are the long wire. And the mesh network don’t have any long
link because it is not using the wrap-around links. Therefore, MMN, TESH, and
torus networks have, 8, 8, and 32 long wires, respectively.

The length of long wire is a crucial parameter to design of an interconnection
network. The performance of a network is strongly influenced by the long links
because the delay caused by these interconnections is a limiting factor. The
operating speed of a network is limited by the physical length of its links. Thus,
the long length of a wire can be used to describe and compare the maximum
physical speeds that the various networks can attain.

Each wrap-around links has a length of 54 mm and 4 wrap-around horizontal
links length is 4 × 54 mm = 216 mm. According to the layout of diagonal links on
a 2D-plane, the longest wires are two diagonal links. The distance of the longest
wire is 121.2 mm. The length of other two diagonal links is 109.6 mm. Thus, the
total length for the long wire in a MMN is (4 × 54 mm) + (2 × 121.2 mm) + (2 ×
109.6 mm) = 677.6 mm = 67.76 cm. Similarly the length of 8 long wires in a TESH
network is 42.24 cm. Also the length of 16 horizontal wrap-around links and 16
vertical wrap-around links of a 16 × 16 torus network is 211.2 mm.

Networks with much wire eventually results a high installation cost and a
large VLSI area which responsible for poor performance. On the contrast, diam-
eter is the maximum number of links that must be traversed to send a packet to
any node of an interconnection network among all distinct pairs of nodes along
the shortest path. Diameter indicates the worst case scenario of a network and
has direct influence on the overall static network performance. Hence, the prod-
uct of total wire length and diameter is a good criteria to get the static operating
cost of the network. We can express the static operating cost as Cstatic = L×D.

prashant.anantharaman.gr@dartmouth.edu

Long Wire Length of MMN 101

Here, Cstatic represents the static operating cost, L for total wire length and D
stands for diameter. The real cost of a system depends on the VLSI realization.
However, the static operating cost is a good criterion to indicate the relationship
between cost and performance of a network.

The wiring complexity, total wire length, diameter, static operating cost,
number of long wire, length of these long wire, longest wire length of 2D-mesh,
2D-torus, TESH, MMN networks have been evaluated and tabulated in Table 1.
For fair comparison we consider degree 4 networks only.

Table 1. Comparison of Total Wire Length of Various Networks

Network Wiring Total Diameter Static # of Length of Longest

Complexity Wire Operating Long Long Wire

Length (cm) Cost Wire Wire (cm) Length (cm)

2D-Mesh 480 211.75 30 6352.50 x x x

2D-Torus 512 422.95 16 6767.20 32 211.20 7.80

TESH(2,2,0) 416 253.99 21 5333.79 8 42.24 6.24

MMN(2,2,0) 416 263.43 17 4478.31 8 67.76 12.12

Due to the absence of wrap-around links in a 2D mesh network, it results
small wire length and large diameter. From Table 1, it is clearly seen that
2D-mesh network can be constructed with minimum wire length among the
networks, 211.75 cm in total. On the other hand, 2D-torus network contains 32
long wrap-around links and among them the longest wire is vertical wrap-around
link and its length is 7.80 cm. Due to presence of numerous long links, the wire
require for a 2D torus is 422.95 cm. This long wire results high static operating
cost which is 6767.2 regardless of low diameter. TESH (2,2,0) is a hierarchical
and optimized architecture with the combination of 2D mesh and 2D torus net-
work. Due to the hierarchy in nature, the longest wire length and the number
of long wire is less which results less wiring complexity and requires small wire
length than that of torus network. Eventually, TESH has less static operating
cost than mesh and 2-D torus network and higher than MMN and it is 5333.79.

Like TESH, MMN (2,2,0) is also a hierarchical network with the combination
of mesh and midimew networks. The number of long wire is the same as that of
TESH network. However, due to diagonal midimew connection and 2D-planar
implementation in VLSI the longest wire length is a bit higher than that of TESH
network. Eventually the total wire length is also a bit high. On the contrast, this
diagonal connection substantially reduces the diameter of the MMN. Therefore,
this small diameter yields small static operating cost for the MMN than that of
2D-mesh, 2D-torus, and TESH network and that is 4478.31.

4 Conclusion

The architecture and wire length, number of long wire, and the longest wire
length of the MMN have been discussed in detail. In addition the wire length

prashant.anantharaman.gr@dartmouth.edu

102 M.M.H. Rahman et al.

evaluation of 2D mesh, 2D torus, and TESH are also explored and compared
with MMN as well. It is shown that the MMN possess a simple architecture,
composed of 2D mesh and midimew network. From the wire length evaluation,
it is clear that, the MMN presents moderate wire length in total with fixed
degree nodes. The number of long wire of MMN is same as TESH network, the
longest wire length is a bit high, the total wire length of MMN is slightly higher
than that of 2D mesh and TESH network. However total wire length of MMN is
far lower in comparison with 2D torus. This paper focused on the architectural
structure and wire length evaluation. Issues for future work include wire length
evaluation of MMN in a 3D VLSI realization.

Acknowledgments. This work is supported by FRGS13-065-0306, Ministry of Edu-
cation, Malaysia. The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions to improve the clarity and quality of the paper.

References

1. Beckman, P.: Looking toward exascale computing. In: 9th PDCAT, p. 3 (2008)
2. Yang, Y., Funahashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recur-

sive diagonal torus: an interconnection network for massively parallel computers.
IEEE Trans. Parallel Distrib. Syst. 12, 701–715 (2001)

3. Abd-El-Barr, M., Al-Somani, T.F.: Topological properties of hierarchical intercon-
nection networks: a review and comparison. J. Elec. Comp. Engg. 1 (2011)

4. Lai, P.L., Hsu, H.C., Tsai, C.H., Stewart, I.A.: A class of hierarchical graphs as
topologies for interconnection networks. J. Theoret. Comput. Sci. 411, 2912–2924
(2010)

5. Jain, V.K., Ghirmai, T., Horiguchi, S.: TESH: a new hierarchical interconnection
network for massively parallel computing. IEICE Trans. IS 80, 837–846 (1997)

6. Dally, W.J., Towles, B.: Route packets, not wires: on-chip interconnection net-
works. In: Proceedings of Design Automation Conference, pp. 684–689 (2001)

7. Awal, M.R., Rahman, M.M.H., Akhand, M.A.H.: A new hierarchical intercon-
nection network for future generation parallel computer. In: Proceedings of 16th
International Conference on Computers and Information Technology, pp. 314–319
(2013)

8. Camarero, C., Martinez, C., Beivide, R.: L-networks: a topological model for reg-
ular two-dimensional interconnection networks. IEEE Trans. Comput. 62, 1362–
1375 (2012)

9. Awal, M.R., Rahman, M.M.H., Nor, R.M., Sembok, T.M.B.T., Miura, Y., Inoguchi,
Y.: Wire length of midimew-connected mesh network. In: Hsu, C.-H., Shi, X.,
Salapura, V. (eds.) NPC 2014. LNCS, vol. 8707, pp. 132–143. Springer, Heidelberg
(2014)

10. Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,
Konow, M., Riepen, M., Gries, M., Droege, G., Larsen, T.L., Steibl, S., Borkar,
S., De, V.K., Wijngaart, R.V.D.: A 48-core IA-32 processor in 45 nm CMOS using
on-die message-passing and DVFS for performance and power scaling. IEEE J.
Solid-State Circ. 46(1), 173–183 (2011)

11. Awal, M.R., Rahman, M.M.H.: Network-on-chip implementation of midimew-
connected mesh network. In: Proceedings of 14th PDCAT, pp. 265–271 (2013)

prashant.anantharaman.gr@dartmouth.edu

K-means and Wordnet Based Feature Selection
Combined with Extreme Learning Machines

for Text Classification

Rajendra Kumar Roul(B) and Sanjay Kumar Sahay

BITS-Pilani, K.K. Birla Goa Campus, Goa, India
{rkroul,ssahay}@goa.bits-pilani.ac.in

Abstract. The incredible increase of online documents in digital form on
the Web, has renewed the interest in text classification. The aim of text
classification is to classify text documents into a set of pre-defined cate-
gories. But the poor quality of features selection, extremely high dimen-
sional feature space and complexity of natural languages become the
roadblock for this classification process. To address these issues, here we
propose a k-means clustering based feature selection for text classification.
Bi-Normal Separation (BNS) combine with Wordnet and cosine-similarity
helps to form a quality and reduce feature vector to train the Extreme
Learning Machine (ELM) and Multi-layer Extreme Learning Machine
(ML-ELM) classifiers. For experimental purpose, 20-Newsgroups and
DMOZ datasets have been used. The empirical results on these two bench-
mark datasets demonstrate the applicability, efficiency and effectiveness of
our approach using ELM and ML-ELM as the classifiers over state-of-the-
art classifiers.

Keywords: Bi-Normal Separation · Extreme Learning Machine · Fea-
ture selection · K-means · Multi-layer ELM · Text classification

1 Introduction

Text classification is one of the most important technique of text mining and
become more popular with the increase in popularity of the internet. However,
the booming of internet increases the size of the problem and hence it is neces-
sary to improve the accuracy of the classification further. Most of the methods
of text classification use ‘bag of words’ model where each unique term of a doc-
ument is a feature. But the dynamic growth of the internet highly increases
the number of documents on the Web which in turn increases the number of
features in the range of millions. Many algorithms of Information Retrieval
(IR) either can not be run or take long running time on a large number of
features. Hence, it is essential to use feature selection for removing redundant
features from the corpus. The main purpose of the feature selection is to deter-
mine which features are most suitable to the present classification technique.
No new features are created in feature selection but some important features are
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 103–112, 2016.
DOI: 10.1007/978-3-319-28034-9 13

prashant.anantharaman.gr@dartmouth.edu

104 R.K. Roul and S.K. Sahay

selected from the existing features. Many studies have been done on good feature
selection techniques for text classification [1,2]. Algorithms of Feature selection
can be broadly classified into filter, wrapper and embedded methods [3]. Fil-
ter method uses a proxy score instead of a predictive score to judge a subset.
On the other hand, wrapper method gives a predictive score to each subset
when the model is trained with respect to those features. In embedded method,
the feature selection is done as a part of the model construction process. For
example, LASSO (Least Absolute Shrinkage and Selection Operator), which
involves penalizing the absolute size of the regression coefficients is a regression
method. Feature selection techniques can be broadly classified into two cate-
gories - unsupervised and supervised. The unsupervised methods like Document
Frequency, Term Strength, Term-Contribution, TF-IDF etc. do not require class
labels of documents to choose the best features while the supervised methods
like Accuracy, Bi-Normal Separation (BNS), Odds Ratio, Probability Ratio, Chi-
Squared Metric, Information Gain (IG), MI-Judge etc. do require class labels for
calculating the best features. A lot of research work has been done in the field
of text classification using various state-of-the-art classifiers [4–7]. But very few
researchers have used Extreme Learning Machines (ELM and ML-ELM) as the
classifiers for text classification.

In this paper, the best features have been selected using the traditional
k-means clustering technique where we divided a class (cluster assumed here)
into a number of sub-classes (or sub-clusters) so that it can further bring more
similar documents into the same group which in turn strengthen the relationship
between the features (or keywords) of that sub-cluster. From each sub-cluster,
we select the top features using Wordnet and cosine-similarity after forming the
synonym lists of each feature selected based on their BNS score (a best per-
forming measures in the probit classifier [8]). Finally, all top features of each
sub-cluster are combined to form a reduced feature vector of the corresponding
cluster for training the ELM and ML-ELM classifiers. The experimental results
on two large datasets (20-Newsgroups and DMOZ) highlight the significance of
ELM and ML-ELM over other established classifiers in the field of text classifi-
cation.

The paper is outlined as follows: Sect. 2 describe the background details of
our approach. In Sect. 3, we describe our proposed approach adopted to classify
the text documents. The experimental work carried out is detailed in Sect. 4 and
finally in Sect. 5, we concluded with some future enhancement of our proposed
work.

2 Background

2.1 Extreme Learning Machine

Extreme Learning Machine (ELM), a classification technique proposed by
Huang [9] is a combination of Single Layer Feed-forward Neural networks (SLFNs)
and Support Vector Machine [10]. Neural networks and SVM are two state-of-the-
art machine learning classifiers. But despite of their superiority, they have many

prashant.anantharaman.gr@dartmouth.edu

K-means and Wordnet Based Feature Selection Combined with ELM 105

limitations such as for neural network, some of the main challenges are rate of
learning compare to their expected rate, unable to handle non-linear separable
data, proneness to over fitting and sensitive to noisy data etc. and in the same
way for SVM, algorithmic complexity, unstandardized probabilities of class mem-
bership, difficult to interpret the parameters for a solved model etc. are some of
the prime challenges which still need to be addressed. ELM on the other hand has
the potential to become a better classifier than other traditional classifiers due to
many important reasons such as no adjustment of input weights and hidden layer
biases are required, gives very good performance with less human intervention,
easy to implement and learning speed is very fast etc. Figure 1 shows the system
diagram of ELM.

Brief on ELM: For N arbitrary distinct samples (xi, yi), where xi = [xi1, xi2, ...,
xin]T ∈ Rn and yi = [yi1, yi2, ..., yim]T ∈ Rm, such that (xi, yi) ∈ Rn ×Rm where
(i = 1, 2, ..., N), along with L hidden nodes, and an activation function g(x). The
output function of ELM for a given input x is:

gL(xj) =
L∑

i=1

βig(wi · xj + bi) = yj, j = 1, ..., N (1)

where, (wi, bi), i = 1, ..., L is randomly generated hidden node parameters such
that wi = [wi1, wi2...win]T is the weight vector connecting all n input nodes to
the ith hidden node. bi is the bias of ith hidden node. β = [β1, ..., βL]T is the
weight vector between the ith hidden node and the output nodes. g(x) is the
output vector which maps the input space of n-dimension to feature space of
L-dimension, H (called ELM feature space, also known as hidden layer output
matrix). Compact format of Eq. (1) can be written as follows:

Hβ = Y (2)

where,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(w1 · x1 + b1) ... g(wL · x1 + bL)

g(w1 · x2 + b1) ... g(wL · x2 + bL)

.

.

.

g(w1 · xN + b1) ... g(wL · xN + bL)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N×L

β =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β11 ... β1m
β21 ... β2m

.

.

.

βL1 ... βLm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L×m

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11 ... y1m
y21 ... y2m

.

.

.

yN1 ... yNm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N×m

(3)

2.2 Multi-layer ELM

Multi-layer ELM (ML-ELM) is a machine learning technique of artificial neural
network which uses deep learning (a multi-layer perceptron) [11] and ELM exten-
sively. Deep networks outperform the traditional multi-layer neural network,
SVMs and SLFNs, but have slow learning speed. Kasun et al. [12] first proposed
the multi-layer form of ELM known as ML-ELM in which unsupervised learning
is performed from layer to layer and it does not require any fine tuning. Hence,
there is no need to spend a long time on the network training. It has a better

prashant.anantharaman.gr@dartmouth.edu

106 R.K. Roul and S.K. Sahay

Fig. 1. ELM as a model

or comparable performance in comparisons with other deep networks. Figure 2
shows how ML-ELM combines both ELM-AE and ELM together. ELM-AE, just
like regular ELMs is a good universal approximator, and its main aim is to repre-
sent the input features in a meaningful way by transforming the input data to a
N dimensional feature space of hidden nodes. Thus, the resulting representation
is either a compressed, equal or sparse representation depending on whether the
input features are mapped to a lower, equal or higher dimensional feature space
than their own. In an ELM network, for N training examples (xj, yj) and L
hidden nodes, we have:

gL(xj) =
L∑

i=1

βigi(xj, wi, bi) = yj, j = 1, ..., N (4)

where (wi, bi), i = 1, ..., L are the randomly generated hidden node parameters
and H is the hidden layer output matrix. The output weights β which map the
hidden nodes feature space to the output nodes can be computed depending on
the number of training samples greater than, equal to or less than the hidden
layer nodes. ELM-AE works in a manner similar to regular ELM except for a
few modifications in order to perform unsupervised learning. ML-ELM makes
use of ELM-AE to train the parameters in each layer. In other words, the hidden
layer weights of ML-ELM are initialized by ELM-AE from layer to layer using
unsupervised learning, and ML-ELM hidden layer activation functions can be
either linear or non-linear piecewise. All output weights are determined ana-
lytically. The output of the ith hidden layer of ML-ELM can be obtained from
the output of (i-1)th hidden layer and the output weight of βi of the ith hidden
layer. The output weight of βi of the ith hidden layer is obtained layer wise
from the ELM-AE, and its transpose. ML-ELM with ‘L’ hidden nodes can be
represented as:

Hn = g((βn)THn-1) (5)

2.3 Bi-Normal Separation (BNS)

According to Forman [2], Bi-Normal Separation (BNS) can be defined as
φ−1(tpr) - φ−1(fpr) where φ is the standard normal distribution, and φ−1 is its

prashant.anantharaman.gr@dartmouth.edu

K-means and Wordnet Based Feature Selection Combined with ELM 107

Fig. 2. Multi-layer ELM and ELM-AE

corresponding inverse, tpr is true positive rate and fpr is false positive rate
respectively.

BNS(x, ck) =
∣
∣
∣φ−1

(nkw

nk

)
− φ−1

(nkw

nk

)∣
∣
∣ (6)

nk is the number of documents in class ck, nk is the number of documents that
are not in class ck, nkw is the number of documents in class ck with word w and
nkw is the number of documents not in class ck with word w.

3 Proposed Approach

The reduce training feature vector preparation for each cluster by selecting the
top features is described as follows:

Step 1 Consider a given corpus consisting of number of classes (i.e. clusters C)
of documents. Construct the term-document matrix for each such cluster
C after pre-processing all the documents and select noun as the keywords
of the entire corpus using minipar1

Step 2 For each cluster C, calculate the TF-IDF vector2 and BNS score of each
keyword of all the documents belonging to that cluster.

Step 3 Run the traditional k-means clustering algorithm on the term-vectors
(i.e. keywords) of the cluster C and it returns k sub-clusters (C ′ =
{c1, c2, ..., ck}).

Step 4 For each C ′ ∈ C, calculate the cosine similarities2 of all keywords with
the centroid of C ′ and then select the top keywords from each C ′ in the
following ways:

(i) Select a keyword X having highest BNS score from the keyword-list of
C ′ and using Wordnet prepare an initial synonym-list for X.

(ii) Next, we need to check those keywords which are present both in the
keyword-list of C ′ and in the synonym-list of X. If any such keywords are
found then create a new synonym-list (new-synonym-list) of X and add

1 http://ai.stanford.edu/∼rion/parsing/minipar viz.html.
2 https://radimrehurek.com/gensim/tutorial.html.

prashant.anantharaman.gr@dartmouth.edu

http://ai.stanford.edu/~rion/parsing/minipar_viz.html
https://radimrehurek.com/gensim/tutorial.html

108 R.K. Roul and S.K. Sahay

all those keywords one by one to the new-synonym-list of X after discard-
ing them from the keyword-list of C ′. In this way the new-synonym-list
of X is created. Now discard the initial synonym-list of X.

(iii) Repeat Step 4(i) and 4(ii) till the keyword-list of C ′ gets exhausted.
Finally, we will have a new-synonym-list for those keywords which are
selected based on their BNS scores from the keyword-list of C ′. This
gives us a lists of new-synonym-list of C ′.

(iv) Select the top m % keywords (determined by experiment3) from each
new-synonym-list of C ′ which have highest cosine-similarity (tightly
bound to the centroid of C ′) values. We then combine all those top
keywords of C ′ from each new-synonym-list and discard the remaining
keywords to obtain the reduced feature vector of C ′.

(v) Repeat the above steps (4(i)-4(iv)) for every C ′ ∈ C and at the end,
combine all the reduced feature vectors into a list to obtain the final
reduce feature vector of C.

Step 5 Repeat Step 2 to 4 for each cluster C to obtain the final reduce feature
vectors of all the clusters in the corpus. The final reduced feature vec-
tor of each cluster is then used to train ELM and ML-ELM and other
traditional classifiers for text classification. Using the output prediction
generated by a classifier and the known class label of the test data, cal-
culate the precision, recall, F-measure and accuracy to quantify the per-
formance of ELM, ML-ELM and other conventional classifiers.

The details of selection of top features from a sub-cluster are discussed in
Algorithm 1.

4 Experimental Results

The proposed method has tested on the 20-Newsgroups4 and DMOZ open direc-
tory project5 datasets. 20-Newsgroups is a collection of nearly 20,000 documents
of newsgroup and divided into 20 different newsgroups. It has Web pages cate-
gorized into 7 categories namely “Alt”, “Computer”, “Miscellaneous”, “Recre-
ation”, “Science”, “Social” and “Talk”. The dataset has 18,846 documents out
of which 7,528 are put into testing set and remaining in training set. Similarly
for DMOZ in which Web pages are divided into 14 categories namely “Arts”,
“Computers”, “Business”, “Home”, “Health”, “Games”, “News”, “Reference”,
“Recreation”, “Regional”, “Shopping”, “Science”, “Sports”, “Society”. We con-
sidered approximately 60,000 Web pages and utilized nearly 30,000 Web pages
each for our training and testing set. We first ran our feature selection algorithm
on these datasets separately. For the k-means clustering, k was set as 10 (deter-
mined by the experiment for which the result is best). For implementing the

3 Iteratively running the script over a range of values of m and finally select that value
of m for which the result is best.

4 http://qwone.com/∼jason/20Newsgroups/.
5 http://www.dmoz.org.

prashant.anantharaman.gr@dartmouth.edu

http://qwone.com/~jason/20Newsgroups/
http://www.dmoz.org

K-means and Wordnet Based Feature Selection Combined with ELM 109

Algorithm 1. Selecting top features of a sub-cluster
Input: Sub-Cluster (C′ = {c1, c2, ..., ck}) generated by traditional k-means
algorithm with cosine-similarity values of each keyword
Output: Reduce feature vector (FV) of C′

Keyword List(KL) ← φ
Synonym Listw(SLx) ← φ
New Synonym Listx(NSLx) ← φ
List of List(LL) ← φ //contains the synonyms list of each keyword selected
based on their BNS score
KL ← keywords from all documents D ∈ C′

for all keyword X ∈ KL (selected based on their BNS score) do
SLx ← all the synonyms of X found in Wordnet
for all keyword U ∈ KL do

flag ← 0
if U present in SLw then

add it to the NSLx of X and remove from KL
if flag = 0 then

flag = 1
end if

end if
if flag = 1 then

KL ← KL − {X}
end if

end for
LL ← LL ∪ NSLx //appended the synonym required list of X to LL
NSLx ← φ

end for
for all NSLx ∈ LL do

select the top m % keywords K(determined by experiment3) having highest
cosine-similarity values from NSLx

FV ← FV ∪ K //append all the top features into a list
end for
return FV

entire approach, python language has been used. A machine with Intel Core 2
Duo Processor, 2.1 GHz, with 64 GB RAM and running Ubuntu 14.04 has been
used to execute the algorithms.

Figures 3 and 4 show the average precision, recall, F-Measure and accuracy of
different classifiers on the 20-Newsgroups and DMOZ dataset respectively. The
number of internal nodes = ‘2000’ set for both ELM and ML-ELM (with number
of hidden layers =‘3’) on 20-Newsgroups dataset which gives us the best results.
Similarly, for DMOZ dataset, we set the number of internal nodes = ‘2500’ for
both ELM and ML-ELM (with number of hidden layers = ‘5’) to achieve the
best results. For demonstration purpose, we have just shown the category wise
performance of ELM and ML-ELM for 20-Newsgroups (feature vector length of
1852) in Tables 1 and 2 and for DMOZ dataset (feature vector length of 2260) in

prashant.anantharaman.gr@dartmouth.edu

110 R.K. Roul and S.K. Sahay

Fig. 3. Average precision, recall, F-measure and accuracy of various classifiers on
20Newsgroups Dataset

Fig. 4. Average precision, recall, F-measure and accuracy of various classifiers on
DMOZ Dataset

Table 1. ELM (20-Newsgroups)

Category Total

testing

documents

Precision Recall F-

measure

Alt 320 0.6201 0.6261 0.6221

Computers 1952 0.8137 0.8444 0.8343

Miscellaneous 390 0.7431 0.7083 0.7243

Recreation 1590 0.7980 0.8189 0.8072

Science 1580 0.7430 0.7059 0.7256

Social 399 0.7610 0.5459 0.6364

Talk 1297 0.7001 0.7499 0.7258

Average 1075 0.7398 0.7142 0.7251

Table 2. ML-ELM (20-Newsgroups)

Category Total

testing

documents

Precision Recall F-

measure

Alt 320 0.6242 0.6224 0.6234

Computers 1952 0.8186 0.8429 0.8344

Miscellaneous 390 0.7769 0.7030 0.7244

Recreation 1590 0.9298 0.8140 0.8680

Science 1580 0.8010 0.7015 0.7456

Social 399 0.6299 0.7635 0.6997

Talk 1297 0.7058 0.7608 0.7268

Average 1075 0.7542 0.7440 0.7460

Tables 3 and 4 respectively. It can be observed from the diagrams that ML-ELM
performs the best out of all the traditional classifiers. ML-ELM has an impressive
average F-measure and average accuracy of 0.7460 and 79 % on 20-Newsgroups
dataset and 0.7195 and 76.7 % on the DMOZ dataset, which signifies that our
promising feature selection method works well for both the datasets.

prashant.anantharaman.gr@dartmouth.edu

K-means and Wordnet Based Feature Selection Combined with ELM 111

Table 3. ELM (DMOZ)

Category Total

testing

documents

Precision Recall F-

measure

Arts 1396 0.7388 0.6815 0.7090

Business 3384 0.7556 0.7014 0.7275

Computers 1494 0.7434 0.6912 0.7164

Games 5757 0.6914 0.6845 0.6879

Health 1491 0.6958 0.7019 0.6988

Homes 1405 0.7314 0.6855 0.7077

News 1504 0.7411 0.6518 0.6936

Recreation 1410 0.6969 0.7015 0.6992

Reference 1301 0.7015 0.6716 0.6862

Regional 1307 0.7114 0.6515 0.6801

Science 1390 0.7275 0.6610 0.6927

Shopping 6209 0.7281 0.6525 0.6882

Society 1505 0.7445 0.6871 0.7146

Sports 1515 0.7215 0.6659 0.6926

Average 2219 0.7235 0.6778 0.6996

Table 4. ML-ELM (DMOZ)

Category Total

testing

documents

Precision Recall F-

measure

Arts 1396 0.7321 0.6819 0.7061

Business 3384 0.7645 0.6923 0.7266

Computers 1494 0.7115 0.7238 0.7176

Games 5757 0.7662 0.7149 0.7397

Health 1491 0.7550 0.6822 0.7168

Homes 1405 0.7139 0.7237 0.7188

News 1504 0.7425 0.6912 0.7159

Recreation 1410 0.7917 0.6823 0.7329

Reference 1301 0.7239 0.6779 0.7001

Regional 1307 0.7732 0.6645 0.7147

Science 1390 0.7882 0.7012 0.7422

Shopping 6209 0.7121 0.7249 0.7184

Society 1505 0.7312 0.6843 0.7070

Sports 1515 0.7442 0.6898 0.7160

Average 2219 0.7464 0.6954 0.7195

5 Conclusion

This paper proposed a new technique for feature selection using clustering. By
using k-means techniques, a number of sub-clusters are generated for a cluster.
Checking synonyms using Wordnet and finally selecting important keywords
using cosine-similarity helps us to obtained the reduces feature vector. For text
classification, ELM and ML-ELM classifiers have been used. We tested our app-
roach on 20-Newsgroups and DMOZ datasets and the results witness the suit-
ability and importance of our approach using ELM and ML-ELM as the clas-
sifiers in the field of text classification. This work can be further extended by
combining ELM and ML-ELM hidden layer feature space with SVM to improve
the results. Also, implementing the proposed approach in a distributed systems
using Hadoop can help in load balancing and faster processing.

References

1. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: ICML, vol. 97, pp. 412–420 (1997)

2. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

4. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. Mining Text
Data, pp. 163–222. Springer, New York (2012)

5. Qiu, X., Huang, X., Liu, Z., Zhou, J.: Hierarchical text classification with latent
concepts. In: Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies: short papers, vol. 2. Asso-
ciation for Computational Linguistics, pp. 598–602 (2011)

prashant.anantharaman.gr@dartmouth.edu

112 R.K. Roul and S.K. Sahay

6. Qiu, X., Zhou, J., Huang, X.: An effective feature selection method for text cat-
egorization. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I.
LNCS, vol. 6634, pp. 50–61. Springer, Heidelberg (2011)

7. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. (CSUR) 34(1), 1–47 (2002)

8. Eyheramendy, S., Madigan, D.: A novel feature selection score for text categoriza-
tion. In: Proceedings of the Workshop on Feature Selection for Data Mining, in
conjunction with the 2005 SIAM International Conference on Data Mining, pp.
1–8 (2005)

9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

10. Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approx-
imation, regression estimation, and signal processing. In: Advances in Neural Infor-
mation Processing Systems, vol. 9. Citeseer (1996)

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

12. Kasun, H.G.V., Zhou, H.: Representational learning with elms for big data schol-
arly article. IEEE Intell. Syst. 28(6), 31–34 (2013)

prashant.anantharaman.gr@dartmouth.edu

Language Identification and Disambiguation
in Indian Mixed-Script

Bhumika Gupta1(✉), Gaurav Bhatt2, and Ankush Mittal3

1 College of Engineering Roorkee, Roorkee, Uttarakhand, India
bhumikagupta0206@gmail.com

2 Indian Institute of Technology, Roorkee, Uttarakhand, India
gauravbhatt.coer@gmail.com

3 Graphic Era University, Dehradun, Uttarakhand, India
director5research@gmail.com

Abstract. The algorithm that has been proposed in this paper tries to segregate
words from various languages (namely Hindi, English, Bengali and Gujarati) and
provide relevant replacements for the misspelled or unknown words in a given
query. Thus, generating a relevant query in which the original language of each
word is known. First, the words are matched directly with the dictionaries of each
language transliterated into English. And then, for those that do not match, a set
of probable words from all the dictionaries taking words that are closest to the
given spelling is shortlisted using the Levenshtein algorithm. After this, to achieve
a higher level of generalization, we use a list of probabilities of doublets and
triplets of words occurring together that are computed from a training database.
The probabilities computed further determine the relevance of those words in the
given text allowing us to pick the most relevant match.

Keywords: Mixed-script · Transliteration · Similarity matching · Supervised
machine learning · Information retreival

1 Introduction

Mixed-script or Macaronism is basically a fusion of two or more languages by phonetic
representation of words from these different languages into one script. A huge majority
of the population of the world is either bilingual or multilingual. These people use code-
mixing (CM) and code-switching (CS) on a regular basis. The main purpose of this
amalgamation is to allow people to express and communicate beyond the constraints of
one language [1, 2]. Even though the definitions of code-mixing and code-switching are
very vague and sometimes overlapping, most people refer to CM as using words from
another language while speaking is some other and CS is defined as switching between
speeches from two or more languages in one particular conversation. Both the forms of
Macaronisms are very common on news, advertising and microblogs currently. For
instance, advertisement taglines like, “yehi hai right choice” and “hungry kya?”. They

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 113–121, 2016.
DOI: 10.1007/978-3-319-28034-9_14

prashant.anantharaman.gr@dartmouth.edu

aid as an enhancement to the lucidity of what one is trying to convey and also as a
medium to reach a wider audience. This can imply that multilingual queries can help
users to ask questions more expressively and also to be able to access a wider source of
retrieval.

Previous work in this area mostly focuses on Cross Language Information retrieval
(CLIR) which, by definition, is the task of retrieving information in a language, L1, when
the query is posed in a language, L2, but may also refer to posing a query in one language
when the retrieval can be from documents in multiple languages. A more demanding
scenario would be if the query contained more than one script transliterated into one
language and the source of retrieval is also in various languages. This was first cited by
Gupta et al. [3] as Mixed-Script Information Retrieval (MSIR) and was later followed
by introduction of tasks in the field of transliterated search by the Forum for Information
Retrieval Evaluation. Bhat et al. in their submission for the FIRE 2014 shared task on
transliterated search [4] used an SVM classifier for query word labeling and a letter
based language model to determine the probabilities of words for query expansion.

The problem in case of MSIR is that there is no common script to represent all these
languages and hence, various forms of transliterations are used. Usually most Indian
languages are phonetically represented in English or the Roman script for easier read‐
ability. This leads to variations in spellings and a lot of times words are misspelled and
might turn out to be unknown to the predefined database.

2 Our Contribution

In an attempt to solve the earlier mentioned issues of misspelled or unknown words in
a multilingual environment we tried some combinations of the concepts of LCS, Edit
Distance and Naive Bayes applied on the N-Gram Markov model.

Firstly, to find a replacement of the word that turns out to be unknown, in a given
query, we used the technique of finding the longest common subsequence of that word
with all the English words and the words from other languages transliterated into
English. Upon doing this we picked one of the words randomly from those that yielded
the longest common subsequence with the unknown word.

This approach did not result in a very relevant match for the word in most cases as
more than one word gave the maximum value for the LCS.

As LCS gave very irrelevant matches in a lot of cases, to generate matches that were
closer to the entered word, we employed the Levenshtein algorithm. Using the edit
distance we were able to generate a list of reasonably more relevant words but the ambi‐
guity still lied in the fact that the minimum edit distance value could also be same for
two or more words.

Thus, a combination of Edit Distance and Naive Bayes was used. The method can
be broken down into the following set of phases, as shown in Fig. 1:

114 B. Gupta et al.

prashant.anantharaman.gr@dartmouth.edu

Fig. 1. Flowchart to demonstrate the proposed method

Phase 1: Where we first lookup all the words, from a given query, directly in the
dictionaries for all four languages.

Phase 2: For the words that do not match in any of the dictionaries, we first shortlisted
the closest matches on the basis of smallest edit distance with the words in the diction‐
aries.

Phase 3: Then we computed probabilities of these shortlisted words of consecutive
occurrence with their neighbors in the original query. The probabilities were computed
from a training database of about 5000 queries. This database contains single language
English queries from a database provided for the FIRE 2014 FAQ Retrieval task and
also, multilingual Hindi-English, Bengali-Hindi-English and Gujarati-Hindi-English
queries which were manually translated into mixed transliterated scripts. Now the word
picked with the highest probability of occurrence with its neighbors is considerably more
relevant.

3 Technique Used

The technique can be used to discern the original language of each word of an input
query. The query is written in English transliterations of a combination of one or more
languages. The languages we worked with are English, Hindi, Bengali and Gujarati but

Language Identification and Disambiguation 115

prashant.anantharaman.gr@dartmouth.edu

the technique can be modified to work for any number of languages. The algorithm
works for spelling variations and misspelled words with an error of one or two characters
but can be modified to check for bigger errors. The limitation of the methodology appears
in the case where the word entered occurs in more than one dictionary, for instance, the
English word “to” might be present in the Hindi dictionary as well where it represents
the English transliteration of the word “तो”. In this case the ambiguity might not be
resolved.

3.1 Language Identification

The process of identification of the original language starts with a basic lookup approach
where each word is looked up in the three lists containing transliterated pairs of Hindi-
English, Bengali-English and Gujarati-English words and a fourth list containing
English words. For this we create a list of four hash tables and store the transliterated
pairs of words in them so that the words from the input queries can be directly matched
in these dictionaries. The words that go unmatched are directed to another function which
works to determine the most appropriate replacement for it from one of the four word
lists for the purpose of disambiguation.

3.2 Disambiguation

For the words that went unidentified in the first lookup based scan:

(a) LCS: Longest common subsequence refers to the longest common sequential set
of characters between two strings where these characters do not necessarily occur
consecutively.
The algorithm is a technique of dynamic programming that uses memorization by
maintaining a table for the LCS at each step.
The implementation can be represented by:

(1)

Where x and y represent the two words whose LCS is being computed and
 is the LCS up to the (i, j)th position in the LCS table.

An LCS is computed for the ambiguous word and each word from all the four
wordlists. The maximum value of LCS is stored and the word corresponding to that
value is used as a replacement.
For instance, considering the example illustrated in Fig. 2, it is inferred that LCS
might not always give exactly one maximum value.

116 B. Gupta et al.

prashant.anantharaman.gr@dartmouth.edu

This makes it difficult to choose the most relevant replacement rendering the method
highly inaccurate in most cases.

Fig. 2. Illustration for the LCS method

(b) Using Edit Distance: As LCS did not result in promising outputs for resolving the
ambiguity of the misspelled words, a method involving the Levenshtein algorithm
using Edit Distance from the NLTK Library was adopted.
Edit distance is a measure of difference in characters between two strings. It uses
character based editing operations like deletion, addition and substitution to
measure this difference between the two given strings.
Mathematically represented as,

(2)

Where lev(i, j) represents the minimum Levenshtein distance between two word
x[1…i] and y[1…j].
Edit distance is calculated for each word from all the dictionaries with the
misspelled word and the word with minimum edit distance is chosen as the replace‐
ment.
As shown in Fig. 3, the same edit distance can occur for more than one word. Thus,
although Edit distance generates a set of more relevant matches for the ambiguous
words compared to the LCS algorithm, it still does not provide us with satisfactorily
accurate results.

Language Identification and Disambiguation 117

prashant.anantharaman.gr@dartmouth.edu

Fig. 3. Illustration for Edit distance method

(c) Using a combination of Edit distance and Naive Bayes on modified N-gram Markov
Model: To refine the results obtained from the Levenshtein algorithm we train a
database containing mixed-script queries using a version of the N-gram Markov
model. From this database we compute probabilities of consecutive occurrence of
pairs of words and store these probabilities in a hash table. Now, to pick the most
relevant result from the list of words generated by the Levenshtein algorithm, we
compare the probabilities of occurrence of these words with their neighbors in the
input query using the already created hash table. The highest probabilities are given
preference to generate the corrected query.
The relation for calculation of probabilities can be represented as:

(3)

Where P is the probability of occurrence of two words, x and y, together,
f(x, y) represents the frequency of consecutive occurrence of x and y in the training
dataset,
f(all words) is the count of words in the database and V ie vocabulary is the count
of unique words.
Now, we consider an example, as shown in Fig. 4, of a medical query that is a blend
of English, Hindi and Gujarati scripts transliterated into English language.
The output query is chosen based on the highest probabilities of each pair of words.
The resultant query in this case is “Cosmetic surgery ke baad swelling kam karne
ke liye shu karvu chhe”.

118 B. Gupta et al.

prashant.anantharaman.gr@dartmouth.edu

Each word in the query is then transliterated back to its original language using
dictionaries that are created from the dataset containing pairs of transliterated Hindi,
Bengali and Gujarati words.
Thus, final result is

Fig. 4. Illustration for the proposed method which uses Edit Distance and Naïve Bayes theorem
implemented on the modified N-Gram Markov model

4 Experiment and Results

For the application of the proposed methodologies the dataset was taken from FIRE
2015 task on Mixed-Script Information Retrieval. A set of commonly used English
words, along with lists of common Hindi, Bengali and Gujarati words along with
their English translations was provided under the task.

Now, for the Naïve Bayes applied on the N-Gram model using supervised machine
learning a training dataset was created. This contained a set of FAQs that were taken
from FIRE 2014 task for FAQ Retrieval. Some of these queries were manually translated
into mixed-script. About 1000 queries each of Hindi-English, Bengali-Hindi-English
and Gujarati-Hindi-English mixed-script were constructed. The resulting database that
was used as the training dataset was a collection of over 5000 mixed-script and single-
script queries in domains like medicine and banking.

Language Identification and Disambiguation 119

prashant.anantharaman.gr@dartmouth.edu

The model designed on this training dataset using the proposed methodology was
tested on a set of 300 random queries. Table 1 demonstrates the output of some of these
queries. The method worked flawlessly for most of these queries yielding an accuracy
of about 97.6 %. The queries were mostly in the same domain as the training dataset.
As a limitation of the relatively small database than the one’s usually used to train
machine learning algorithms, some words might be unknown and hence even the rele‐
vant words might generate a very low probability of occurrence. A wider training data‐
base might eradicate this issue.

Table 1. Sample queries with respective output for the proposed method

5 Conclusion and Future Work

In this paper we addressed the problems of language identification in case of Indian
mixed-script queries for the misspelled and ambiguous words. Approaches like the LCS
algorithm and Levenshtein distance were tested which, though resolved the problem to
some extent, had a lot of limitations and did not work for a wide range of cases. The
method stated was, hence, a combination of Levenshtein algorithm and supervised
machine learning. The use of Naïve Bayes theorem using the N-Gram model consider‐
ably reduced the scope of error and gave a reasonably higher accuracy for maintaining
a check on misspelled words.

The method can be improved on using techniques like deep learning and can be
trained to work better for the out-of-vocabulary words. Another improvement would be
the verification of correct original language for words that are found in more than one
dictionary after transliteration into English language. This can be done by tagging words
with their original language in the training database.

120 B. Gupta et al.

prashant.anantharaman.gr@dartmouth.edu

References

1. Vyas, Y., Gella, S., Sharma, J., Bali, K., Choudhury, M.: POS tagging of English-Hindi code-
mixed social media content. In: Proceedings of the EMNLP 2014, pp. 974–979 (2014)

2. Chittaranjan, G., Vyas, Y.: Word-level language identification using CRF: code switching
shared task report of MSR india system. In: Proceedings of the EMNLP (2014)

3. Gupta, P., Bali, K., Banchs, R.E., Choudhury, M., Rosso, P.: Query expansion for mixed-
script information retrieval. In: Proceedings of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval (2014)

4. Bhat, I.A., Mujadia, V., Tammewar, A., Bhat, R.A., Shrivastava, M.: IIIT-H system
submission for FIRE 2014 shared task on transliterated search. In: Proceedings of the Forum
for Information Retrieval Evaluation (2014)

5. King, B., Abney, S.: Labelling the languages of words in mixed-language documents using
weakly supervised methods. In: Proceedings of NAACL-HLT (2013)

6. Gupta, P., Rosso, P., Banchs, R.E.: Encoding transliteration variation through dimensionality
reduction: FIRE shared task on transliterated search. In: Proceedings of the 5th Forum for
Information Retrieval Evaluation (2013)

7. Raghavi, K.C., Chinnakotla, M.K., Shrivastava, M.: Answer ka type kya he? Learning to
classify questions in code-mixed language. In: Proceedings of the 24th International
Conference on World Wide Web Companion, pp. 853–858. International World Wide Web
Conferences Steering Committee (2015)

8. Roy, R.S., Choudhury, M., Majumder, P., Agarwal, K.: Overview and datasets of FIRE 2013
track on transliterated search. In: Proceedings of the 5th Forum for Information Retrieval
Evaluation (2013)

9. Marton, Y., Callison-Burch, C., Resnik, P.: Improved statistical machine translation using
monolingually-derived paraphrases. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, vol. 1, pp. 381–390. Association for Computational
Linguistics (2009)

10. Callison-Burch, C., Koehn, P., Osborne, M.: Improved statistical machine translation using
paraphrases. In: Proceedings of the Main Conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational Linguistics,
pp. 17–24. Association for Computational Linguistics (2006)

11. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In: Proceedings of the 20th International
Conference on Computational Linguistics, p. 350. Association for Computational Linguistics
(2004)

12. Gupta, K., Choudhury, M., Bali, K.: Mining Hindi-English transliteration pairs from online
Hindi lyrics. In: LREC, pp. 2459–2465 (2012)

Language Identification and Disambiguation 121

prashant.anantharaman.gr@dartmouth.edu

A Dynamic Priority Based Scheduling
Scheme for Multimedia Streaming Over

MANETs to Improve QoS

Syed Jalal Ahmad1, V.S.K. Reddy2, A. Damodaram3,
and P. Radha Krishna4(&)

1 J B Institute of Engineering and Technology, Hyderabad, India
jalal0000@yahoo.com

2 Malla Reddy College of Engineering and Technology, Hyderabad, India
vskreddy2003@gmail.com

3 Jawaharlal Nehru Technological University, Hyderabad, India
damodarama@rediffmail.com

4 Infosys Labs, Infosys Limited, Hyderabad, India
radhakrishna_p@infosys.com

Abstract. In MANETs, delay and loss of packets need to be reduced in order to
provide a good quality of multimedia data transmission over MANETs. To
achieve this, we propose a Priority Based Mapping Method, which provides
priority in the order of I (intra coded), P (predictive coded) and B (bidirectional
predictive coded) frame packets. In addition, our approach handles the expiry
time of the packets as well as damaged acknowledgement of the packets/frames.
We validate our approach through simulations.

Keywords: Virtual buffer � Multimedia � MANET � Video streaming � QoS

1 Introduction

The most important features of Quality of Service (QoS) for multimedia and real time
traffic in Mobile Adhoc Networks (MANETs) are delay and loss of packets. For
successful communication between a pair of end users, delay should be low and kept
within the tolerable limits.

The 802.11e standard [3] guarantees the QoS requirements for multimedia appli-
cations by giving differential services at MAC level and improves the performance of
physical level in the critical traffic condition. This standard defines access categories
based on transmission priorities at channel level. However, their approach consider
only single multimedia flow. Lee and Chung [2] proposed Scalable Video Coding
(SVC) to overcome the drawbacks of 802.11e by providing priorities to the multimedia
frame packets. However, these priorities are pre-defined in the field which causes
reduction in Packet Delivery Ratio (PDR). This is because, SVC does not pay attention
towards the packets whose acknowledgements are damaged or the packets that are not
received in a finite order, which results in degradation of QoS. Also Shin et al. [5]
proposed a cross line video transmission scheme having three types of video frames:

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 122–126, 2016.
DOI: 10.1007/978-3-319-28034-9_15

prashant.anantharaman.gr@dartmouth.edu

Intra coded (I), Predictive coded (P) and Bidirectional predictive coded (B). The
priority of these frames are pre-defined resulting into reduction of QoS as well as
increase in the loss of packets. Raji and Kumar [4] presented an approach to provide
QoS for multimedia applications. However, their approach do not provide any guar-
antee if packets are not positively acknowledged at the receiver side.

In this paper, we present a Priority Based Mapping Method (PBMM), which gives
first priority to I frame packets, second priority to P frame packets and finally B frame
packets. Our approach also takes care of expiry time of the packets (i.e., time of I,
P and B frame packets). Before the expiry time of any packet, the scheduler send these
packets to a buffer (called Q buffer in our approach) by using a switching property of
packets, where these packets are directly go to the next anchoring node. Further, the
proposed approach handles the negative acknowledgement of the packets/frames. We
used selective repeat technique to consider the negative acknowledgement of the
packets that are either not received in a proper order or the packets which are damaged
due to noise. Thus, the priority of the packets in our approach changes dynamically.
The benefits of our approach is two-fold: (i) reduced delay by maintaining the time
count of the packets and (ii) reduced loss of packets by controlling the order of packets.

2 PBMM Scheme

Our approach dynamically assigns
the priority to the multimedia data
packets based on the threshold
time of the packet, that is, the
laxity time period of the packet.
Figure 1 shows the proposed
buffer architecture for multimedia
data packets. In the proposed
PBMM scheme, we divide the
virtual buffer into four sub buffers namely I, P, B andQ frame buffers. The first three buffers
are used for compression of video information. The additionalQ frame buffer is used to store
and forward the packets towards the next anchoring node or destination whose acknowl-
edgements are not yet received positively within the specified time limit due to either
congestion or noise during transmission.

Figure 2 depicts the scheduler mech-
anism for the packets where first priority
is given to I frame packets, followed by
P and finally B frame packets. This is
because loss of I frame packet will have
more effect on multimedia applications
[6]. On the other hand, if B frame packet
is lost, it just affects itself. In this work,
we introduce a service to forward the
packets called Packet Forwarding Ser-
vice (PFS) by keeping an additional field

Fig. 1. Architecture of PBMM for multimedia packets

Fig. 2. Scheduler mechanism

A Dynamic Priority Based Scheduling Scheme 123

prashant.anantharaman.gr@dartmouth.edu

in the header. In this scheme, an additional field of 6 bytes is considered as part of the
packet header to store the laxity time of the packet and the hop count [2]. Here, laxity
time is the difference between deadline and current local time. Packets whose time
expires after the laxity time limit are directly given to the Q buffer by using a switching
technique where they can move towards the destination and can overcome the delay as
well as the loss of packets. We call these packets as High Priority Packets (HPPs). The
HPPs are those packets whose access time is greater than the threshold limit. Such type
of packets waste the bandwidth unnecessarily. In the present approach, we assume that
a separate threshold is defined for each type of packet.

The Q buffer takes care of the packets, whose acknowledgements are not received
positively within the specified time limit, by using a feedback mechanism (see Fig. 2).
The incoming packets are first stored in the router buffer as per the scheduler. If the Q
buffer is empty, it sends the I frame packets and at the same time checks the Threshold
Limit of I frame packets TLI. If the threshold limit is less than the laxity time, then it
continuously transmits the packets towards destination through the I frame buffer.
Suppose any Packet Time (Pt) is equal to its laxity time (for instance, laxity time period
for voice packet is 150 ms and for video it is 400 ms [2]), then the packet is directly
given to the Q buffer, where it will be accessed directly towards the next anchoring
node or destination. Similarly, if the threshold of P and B packets, say TLP & TLB

respectively, is equal to the laxity limit, such packets will also directly access the Q
buffer and can reach to the destination. The buffer Q is further divided into three
sub-buffers called QI, QP and QB which access priority wise damaged acknowledge-
ment packets. First it access the negative acknowledged packets of I frame through QI

sub buffer, next negative acknowledged packets of P frame through QP and finally B
frame through QB.

Our approach differs from the Lee andChung [2] approach in three ways: (a) we use the
virtual buffer at the intermediate node (which is the router in MANETs) to prioritize the
packets, (b) we only consider the acknowledgements of those packets which either received
out of order or damaged due to noise or any other effect in the network and (c) additional
buffer Q is used along with I, P and B frame buffers.

3 Results and Discussion

We used NS-2 Simulator to demonstrate
our approach and compared the results
with two existing approaches namely
SVC [2] and Raji [4]. Figure 3 shows the
variation of PDR with simulation time of
the source- destination pair. It can be
observed that if the source- destination
pair is far away (i.e., multiple hops)
from each other, as the simulation time
increases, the PDR also increases in all
the three approaches (i.e., SVC, Raji and
our approach). However, our approach Fig. 3. PDR vs simulation time

124 S.J. Ahmad et al.

prashant.anantharaman.gr@dartmouth.edu

produces better results. Initially the PDR
of SVC and Raji approaches is better
when compared to our approach as it
maintains a routing table which leads to an
initial overhead. However, after elapse of
certain time period, our approach has
much higher PDR as we are saving more I,
P and B frame packets that are lost in the
cases of SVC and Raji approaches.

Figure 4 shows the variation of
delay with simulation time for the three
approaches. Here, the delay in our
approach is less in comparison with the
SVC and Raji approaches. This is because,
as the number of hops increases,
SVC and Raji approaches take more
time to sense and access the channel
that inturn increases the delay. Also,
the results show that if intermediate
nodes are busy with other source-
destination pairs for communication,
still our approach maintains the PDR
higher than the existing approaches.
We used location aware and energy
efficient routing protocol [1] to
maintain the routing table in the
network. Table 1 shows the simula-
tion environment and parameters
considered.

4 Conclusion

In this paper, we presented a PBMM scheme to improve QoS for multimedia appli-
cations in MANETs by exploiting the characteristics of the video frame and the priority
of the packets. Unlike the SVC and Raji approaches, our approach guarantee the
transmission of all type of packets (i.e. I, P, & B frame packets) without any increase in
the delay. Our approach also reorganizes the order of packets according to the time
schedule of the packet. The presented approach is very effective for multimedia
applications in multi-hop networks.

Fig. 4. Delay vs simulation time

Table 1. Simulation values

Network parameters Values

Simulation time 50 s
No. of nodes 2 to 50
Packet size 512 bytes
Pause time 30 s
MAC type PBMM
Radio propagation model Two-ray ground
Queue type Drop-tail
Antenna Omni antenna
Routing LAEERP
Simulation speed 2, 5, 8, 10, 12 m/s
Channel capacity 2 Mbps
Traffic Video
Network area 1000 m × 1000 m

A Dynamic Priority Based Scheduling Scheme 125

prashant.anantharaman.gr@dartmouth.edu

References

1. Ahmad, S.J., Reddy, V.S.K., Damodaram, A., Krishna, P.R.: Location aware and energy effi-
cient routing protocol for long distance MANETs. Int. J. Netw. Virtual Organ. 13(4), 327–350
(2013)

2. Lee, S., Chung, K.: The study of dynamic video frame mapping scheme for multimedia
streaming over IEEE 802.11e WLAN. Int. J. Multimedia Ubiquit. Eng. 8(1), 163–174 (2013)

3. Reddy, T.B., John, P.J., Murthy, C.S.R.: Providing MAC QoS for multimedia traffic in
802.11e based multi hop ad hoc wireless networks. Comput. Netw. 51(1), 153–176 (2007)

4. Raji, V., Kumar, N.M.: An effective stateless QoS routing for multimedia applications in
MANETs. Int. J. Wireless Mob. Comput. 7(5), 456–464 (2014)

5. Shin, P., Lee, S., Chung, K.: A cross-layer based video transmission scheme using efficient
bandwidth estimation in IEEE 802.11e EDCA. J. KIISE Inf. Netw. 35(3), 173–182 (2008)

6. Takeuchi, S., Sezaki, K., Yasuda, Y.: Dynamic adaptation of contention window sizes in
IEEE 802.11e Wireless LAN. In: International Conference on Information, Communications
and Signal Processing, Bangkok, Thailand (2009)

126 S.J. Ahmad et al.

prashant.anantharaman.gr@dartmouth.edu

Improved Bug Localization Technique Using Hybrid
Information Retrieval Model

Alpa Gore1(✉), Siddharth Dutt Choubey2, and Kopal Gangrade2

1 Department of Computer Science and Engineering, Shri Ram Institute of Technology,
Jabalpur, Madhya Pradesh, India
Gore.Alpa@gmail.com

2 Department of Information Technology, Shri Ram Institute of Technology,
Jabalpur, Madhya Pradesh, India

{Siddharth.Choubey,Kopal.Gangrade}@gmail.com

Abstract. The need of bug localization tools and increased popularity of text
based IR models to locate the source code files containing bugs is growing
continuously. Time and cost required for fixing bugs can be considerably mini‐
mized by improving the techniques of reducing the search space from few thou‐
sand source code files to a few files. The main contribution of this paper is to
propose a Hybrid model based on two existing IR models (VSM and N-gram) for
bug localization. In the proposed hybrid model performance is further improved
by using word based bigrams. We have also introduced a weighing factor beta β
to calculate the weighted sum of unigram and bigram and analyzed its accuracy
for values ranging from (0–1). Using TopN, MRR and MAP measures, we have
conducted experiments which show that the proposed hybrid model outperforms
some existing state-of-art bug localization techniques.

1 Introduction

Bug fixing is an important activity and improving its performance in terms of time and
efforts required, has become a major area of concern. This is the reason that bug fixing
techniques have gained special attention for researchers. The steps involved in tradi‐
tional bug fixing are as follows: 1. Bug reports are received and verified. 2. The developer
team locates the buggy source code files to be fixed. 3. The source code files are fixed.
The second step is a time consuming activity if done manually. The bug fixing efforts
and time can be minimized by using tools to locate the buggy source code files. This
process of using tools to locate the buggy source code files is termed as bug localiza‐
tion. Previous work done on bug localization using information retrieval techniques are:
1. Lukins et al. in 2010 [3] worked on applying LDA (Latent Dirichlet Allocation) model
for bug localization. 2. Rao and Kak [4] in 2011 did a comparative analysis of various
IR techniques like Unigram, Latent Semantic Analysis (LSA), VSM, LDA and Cluster.
3. Zhou et al. [5] proposed BugLocator which used sophisticated TF.IDF formulation,
length of file factor and similarity among bugs previously fixed. 4. Saha et al. [7]
proposed BLUiR and suggested and tested an approach based on concept of using code
structural information for information retrieval. 5. Lal and Sureka [6] proposed and

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 127–131, 2016.
DOI: 10.1007/978-3-319-28034-9_16

prashant.anantharaman.gr@dartmouth.edu

tested hypothesis of applying the concepts of character based n-gram to achieve bug
localization.

2 Architecture of Hybrid Model

In Vector Space Model (VSM) vector value is calculated based on token frequency tf
and inverse document frequency idf of each token [2]. One of the disadvantages of VSM
is that it does not include term dependencies into the model, for instance for modeling
phrases or adjacent terms. Using N-gram model Song and Croft [1] proposed the use of
statistical language model approximated by N-gram models in information retrieval.
Unigram model assumes that each word occurs independently. The bigram model takes
the local context into consideration. The proposed hybrid model captures the relevance
of adjacent terms by using bigrams model and calculating bigram based vectors.

2.1 Overview of Proposed Approach

We propose a hybrid model that uses word based N-gram model [1] in conjunction with
VSM model [4]. The proposed hybrid model along with single terms (unigrams) also
performs indexing for bigrams. A weighing factor beta (β) (0 ≤ β ≤ 1) is used to combine
scores from both unigram and bigram terms and then final ranking of documents is done.
The data set used for experiment is SWT(v3.1), AspectJ and Eclipse(v3.1) (Table 3)
which is a subset of the data set used by BugLocator and the comparative study of the
result is done. TopN, MRR (Mean Reciprocal Rank) and MAP (Mean Average Precison)
is used as evaluation matrix. Figure 1 shows the architecture of the proposed hybrid
model. Improvement in the performance of bug localization is based on utilizing
semantic similarity by applying statistical language model like N-gram Model. TF.IDF
model is used for indexing and calculating scores. We have used rVSM proposed by
Zhou et al. [5] for length normalization, TF.IDF and final score calculations.

Final Ranked Files
Retrieval of

Ranked Files
using rVSM

Query

Bigram
Indexing

Unigram
Indexing

New Bug
Report

Source
Code Files

Corpus
Creation

Combining
Scores

Unigram
Score

Calculation

Bigram
Score

Calculation

Query
Creation

Fig. 1. Overall architecture of the new hybrid approach using unigram and Bigram scores

Every bug report is a search query and is matched against each source code to calcu‐
late scores. In the proposed hybrid approach we calculate uScore (from Unigram Vector)

128 A. Gore et al.

prashant.anantharaman.gr@dartmouth.edu

and bScore (from Bigram Vector) using rVSM [5]. After calculating uScore and bScore
for each file we combine the two scores by calculating weighed sum of the two using
the following:

(1)

where β is a weighing factor and (0 ≤ β ≤ 1). The fScore is the final score and is weighted
sum of uScore and bScore. The source code files are ranked using fScore and the Final‐
Rank is returned to the user.

3 Experimental Result

We have evaluated the value of MRR (Mean Reciprocal Rank) measure for various
values of β (in range 0 to 1) which is shown in Table 1 to establish optimum value of β
for each dataset. The comparative analysis of performance of our proposed hybrid
approach with respect to Classical VSM and rVSM [5] on Top1, Top5, Top10, MRR
and MAP measures is shown in Tables 2 and 3, Fig. 2.

Table 1. Value of MRR for SWT, AspectJ and Eclipse datasets for β range (0 to 1)

β → 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SWT 0.532 0.533 0.530 0.531 0.550 0.553 0.540 0.544 0.506 0.489 0.346

AspectJ 0.347 0.351 0.352 0.353 0.347 0.343 0.336 0.318 0.294 0.262 0.212

Eclipse 0.300 0.322 0.336 0.381 0.343 0.336 0.324 0.306 0.284 0.265 0.241

Table 2. Comparative analysis of MRR for rVSM and Hybrid model for benchmark dataset

Model SWT AspectJ Eclipse

rVSM 0.47 0.33 0.35

Hybrid 0.553 (β = 0.5) 0.353 (β = 0.3) 0.381 (β = 0.3)

Table 3. Details of Benhmark Datasets

Project #Bugs #Files

SWT (v3.1) 98 484

AspectJ 286 6485

Eclipse (v3.1) 3075 12863

Improved Bug Localization Technique Using Hybrid Information 129

prashant.anantharaman.gr@dartmouth.edu

Fig. 2. Comparative analysis of Top1, Top5 and Top10, MAP and MRR for Classical, rVSM
and Hybrid Model for data set SWT, AspectJ and Eclipse

4 Conclusion and Future Work

The experiment results from Table 1 show that optimum performance is achieved at
β = 0.5, β = 0.3 and β = 0.3 for benchmark datasets SWT, AspectJ and Eclipse respec‐
tively. Also the proposed hybrid model shows consistent performance improvements on
all the three TopN, MRR and MAP measures when compared with Classical and rVSM
techniques. The future work will be focused on testing hybrid model on preprocessed
large data sets.

References

1. Song, F., Croft, B.: A general language model for information retrieval. In: Proceedings of the
1999 ACM SIGIR Conference on Research and Development in Information Retrieval (1999)

2. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

3. Lukins, S., Kraft, N., Etzkorn, L.: Bug localization using latent Dirichlet allocation. Inf. Softw.
Technol. 52(9), 972–990 (2010)

4. Rao, S., Kak, A.: Retrieval from software libraries for bug localization: a comparative study
of generic and composite text models. In: Proceeding of the 8th Working Conference on Mining
Software Repositories (MSR 2011), pp.43–52. ACM, Waikiki, Honolulu, Hawaii (May 2011)

5. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? - more accurate information
retrieval-based bug localization based on bug reports. In: Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pp. 14–24. IEEE Press, Piscataway, NJ,
USA (2012)

130 A. Gore et al.

prashant.anantharaman.gr@dartmouth.edu

6. Lal, S., Sureka, A.: A static technique for fault localization using character n-gram based
information retrieval model. In: Proceedings of ISEC 2012, Kanpur, UP, India (22–25 February
2012)

7. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using structured
information retrieval. In: Proceedings of ASE, pp. 345–355, Heidelberg, New York (2013)

Improved Bug Localization Technique Using Hybrid Information 131

prashant.anantharaman.gr@dartmouth.edu

HGASA: An Efficient Hybrid Technique for Optimizing
Data Access in Dynamic Data Grid

R. Kingsy Grace1(✉) and R. Manimegalai2

1 Sri Ramakrishna Engineering College, Coimbatore, India
kingsygrace.r@srec.ac.in

2 Park College of Technology, Coimbatore, India
mmegalai@yahoo.com

Abstract. Grid computing uses computers that are distributed across various
geographical locations in order to provide enormous computing power and
massive storage. Scientific applications produce large quantity of sharable data
which requires efficient handling and management. Replica selection is one of
the data management techniques in grid computing and is used for selecting data
from large volumes of distributed data. Replica selection is an interesting data
access problem in data grid. Genetic Algorithms (GA) and Simulated Annealing
(SA) are two popularly used evolutionary algorithms which are different in nature.
In this paper, a hybrid approach which combines Genetic Algorithm with Simu‐
lated Annealing, namely, HGASA, is proposed to solve replica selection problem
in data grid. The proposed algorithm, HGASA, considers security, availability of
file, load balance and response time to improve the performance of the grid.
GridSim simulator is used for evaluating the performance of the proposed algo‐
rithm. The results show that the proposed algorithm, HGASA, outperforms
Genetic Algorithms (GA) by 9 % and Simulated Annealing (SA) by 21 % and Ant
Colony Optimization (ACO) by 50 %.

Keywords: Replica selection · Data grid · Computational grid · Genetic
algorithm · Simulated annealing

1 Introduction

The two major categories of grid computing [1] are: (i) Computational grid and (ii) Data
grid. Computational grid is mainly used for compute intensive applications and data grid
is an infrastructure for storing and sharing large volumes of data, for data intensive
applications Data replication in data grid reduces the access latency in distributed
systems by keeping multiple copies of the data file in geographically distributed sites
[2]. In a data grid system, there are hundreds of clients across the globe submitting job
requests. Usually, a grid job accesses multiple files for its job execution. In data-intensive
applications, when a job accesses large file, the unavailability of that file can cause the
whole job to hang up. Any node or network failure causes file unavailability. As a result,
there has been an increasing research interest focusing on how to maximize the file
availability. Data replication reduces the access latency in distributed systems by

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 132–136, 2016.
DOI: 10.1007/978-3-319-28034-9_17

prashant.anantharaman.gr@dartmouth.edu

keeping multiple copies of the data file in geographically distributed sites [2]. Each grid
site has its own capabilities and characteristics; therefore, selecting one particular site
which has the required data among many such sites, is an important and significant
decision [3]. The replica selection problem has been investigated by many researchers
and only response time is considered as a criterion for the selection process. In this work,
the replica selection problem is addressed as an important decision to guarantee effi‐
ciency and to ensure the satisfaction of the grid users by providing replicas with reduced
latency and improved security. The main contribution of this work is to produce an
alternative solution to the replica selection problem based on response time, availability,
security and load balancing. This work extends the replica selection using genetic algo‐
rithm [4] by employing hybrid approach. The proposed replica selection algorithm is
based on both genetic algorithm and simulated annealing and is called as Hybrid of
Genetic Algorithm and Simulated Annealing (HGASA). HGASA is implemented using
GridSim 5.1 simulation toolkit [5]. Performance of the proposed HGASA approach is
compared with Genetic Algorithm (GA), Ant Colony Optimization (ACO) algorithm,
Simulated Annealing (SA) in terms of TASL (Response Time, Availability, Security
and Load Balancing) value [4].

2 Related Work

Replica selection is one of the important tasks of data management in data intensive
application. It decides which replica location is the best place to access the data for users.
If several replicas are available for a file, the optimization algorithm determines which
replica should be selected to execute the job. Lin et al. have proposed a Network Co-
ordinate (NC) based nearest replica selection service called Rigel in [6]. Tim and
Ambramson have proposed GriddLeS Data Replication Service (GRS) which provides
limited support for automatic replica selection in [3]. Naseera and Murthy have proposed
predictive replica selection using neural networks [7] based on [8]. Ishii and Mello have
proposed a solution for Data Access Problem (DAP) in [9]. It is a prediction based
optimization approach. Sun et al. have proposed an Ant Colony Optimization (ACO)
algorithm for replica selection in [10]. It reduces data access latency, decreases band‐
width consumption and distributes the load evenly. Jadaan et al. have proposed a rank
based elitist clustering genetic algorithm for replica selection in data grid [4].

3 HGASA: Hybrid of Genetic Algorithm and Simulated Annealing
for Replica Selection

Genetic Algorithm (GA) was introduced by J. Holland in 1975 [11] and had been used
for solving searching, learning and optimization problems. GA is a global search tech‐
nique which is based on the mechanism of biological evolution inspired by Darwin’s
theory of evolution [12]. GA consists of two types of operations, namely, mutation and
crossover. These operations are repeatedly applied to a population of chromosomes for
obtaining a possible solution for the given search space. Simulated Annealing (SA) is a
heuristic optimization algorithm [13] and is analogous to annealing in metals and solids.

HGASA: An Efficient Hybrid Technique for Optimizing Data Access 133

prashant.anantharaman.gr@dartmouth.edu

SA was first introduced by Metropolis et al. in [14]. The idea in Metropolis et al. is used
by Kirkpatrick et al. in [13] to search for an optimal solution in optimization problems.
Combining GA which is a global search technique with SA which is a local search
technique gives the benefit of both, at the same time avoids problems such as premature
convergence and local optimum [15]. In the proposed replica selection architecture, if
a user requests for a replica, the replica selection algorithm gets all information regarding
the replica from the Replica Location Service (RLS) [16]. The best replica location site
is selected based on four parameters: response time, availability, security and load
balancing. The network related information such as bandwidth is gathered with the help
of Network Weather Service (NWS). A hybrid evolutionary algorithm, HGASA, which
employs both Genetic Algorithm (GA) and Simulated Annealing (SA), is proposed in
this work. TASL values are used to compare the performance of the proposed algorithm
with the existing algorithms. During GA implementation, a Model Replica (MR) [4] is
set with maximum (100 %) of response Time T, Availability A, Security S and Load
balancing L. i.e. MR (T, A, S, L) = (100, 100, 100, 100). The distance between MR and
the available replica is computed using the Eq. (1). T1, A1, S1 and L1 are the TASL values
of MR and T0, A0, S0 and L0 are the TASL values of available replica.

(1)

The replicas that are closer to MR are grouped to form a cluster. The replica with
the shortest distance from the MR is selected as the best replica. The cluster metric, M,
is calculated as in [4]. The implementation parameters for the proposed algorithm,
HGASA are initial population is 50, mutation probability is 0.9, crossover probability
is 0.1, initial temperature is 10000 and cooling rate is 0.9. The implementation of
HGASA algorithm for replica selection problem is shown in Algorithm 1.

4 Experimental Results

The ACO, GA, SA and HGASA algorithms are implemented using Intel CORE i5
processor and simulated in GridSim toolkit [5] for selecting best replica location. The
number of sites in the grid network will be defined by the user and with varying perform‐
ance in time, availability, security and load balancing. The number of grid sites is twenty
in the simulation of existing and proposed algorithms. The performance of the ACO,
GA, SA and HGASA are calculated for two different scenarios such as 10 user requests
and 25 user requests. The efficiency is calculated using the Formula in [4]. GA is 44 %
more efficient than ACO algorithm for selecting replica in data grid. HGASA shows
21 %, 9 % and 50 % more improvement in efficiency when compared to SA, GA and
ACO respectively. When two or more sites have the best possible performance in terms
of response time, security, availability and load balancing which are equal in propor‐
tional value but vary in the order, then randomly one among them is selected for creating
the replica. All the factors are equally considered and one factor is not preferred over
the other during replication. The response time, security, availability and load balancing
for all the twenty sites are generated randomly from 75 to 95.

134 R. Kingsy Grace and R. Manimegalai

prashant.anantharaman.gr@dartmouth.edu

5 Conclusion

HGASA based Replica Selection in Data Grid improves the efficiency of selecting the
best replica site for user requests during job execution. The efficiency is improved by
increasing the number of parameters such as response time, availability of the file,
security and load balancing. The efficiency of the HGASA algorithm is compared with
GA, SA and ACO. ACO algorithm does not deal with availability, security and load
balancing, and therefore not efficient when compared to genetic algorithm, simulated
annealing and HGASA. The efficiency of genetic algorithm and simulated annealing is
44 % and 36 % greater than ACO algorithm. The proposed algorithm, HGASA, performs
better than all the three algorithms, namely, GA, SA and ACO by 9 %, 21 % and 50 %
respectively. The efficiency can be improved further by considering other parameters
such as bandwidth, scheduling strategies, access pattern that are important for job
execution.

Acknowledgements. The authors would like to thank the Management & Principal of Sri
Ramakrishna Engineering College, and the Head of the Department of Computer Science and
Engineering, for their support in completing this work.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco (1999)

2. Khanli, L.M., Isazadeh, A., Shishavan, T.N.: PHFS: a dynamic replication method, to
decrease access latency in the multi-tier data grid. Future Gener. Comput. Syst. 27(3), 233–
244 (2011)

HGASA: An Efficient Hybrid Technique for Optimizing Data Access 135

prashant.anantharaman.gr@dartmouth.edu

3. Tim, H., Abramson, D.: The griddles data replication service. In: Proceedings of the 1st
International Conference on E-Science and Grid Computing, pp. 271–278 (2005)

4. Jadaan, O.A., Abdulal, W., Hameed, M.A.: Enhancing data selection using genetic algorithm.
In: Proceedings of IEEE International Conference on Computational Intelligence and
Communication Networks, pp. 434–439 (2010)

5. Buyya, R., Murshed, M.: GridSim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. J. Concurrency Comput. Pract.
Experience 14, 1175–1220 (2002)

6. Lin, Y., Chen, Y., Wang, G., Deng, B.: Rigel: a scalable and lightweight replica selection
service for replicated distributed file system. In: 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, CCGC, pp. 581–582 (2010)

7. Naseera, S., Murthy, K.V.M.: Performance evaluation of predictive replica selection using
neural network approaches. In: Proceedings of International Conference on Intelligent Agent
and Multi-Agent Systems, IAMA 2009, p. 1 (2009)

8. Rahman, R.M., Baker, K., Alhajj, E.: A predictive technique for replica selection in grid
environment. In: Seventh IEEE International Symposium on Cluster Computing and the Grid,
pp. 163–170 (2007)

9. Ishii, R.P., De Mello, R.F.: An online data access prediction and optimization approach for
distributed systems. IEEE Trans. Parallel Distrib. Syst. 23(6), 1017–1029 (2012)

10. Sun, M., Sun, J., Lu, E., Yu, C.: Ant algorithm for file replica selection in data grid. In:
Proceedings of First International Conference on Semantics, Knowledge and Grid, p. 64
(2005)

11. Holland, J.: Adaptation in Natural Artificial Systems. University of Michigan Press, Ann
Arbor (1992)

12. Olivas, E.S., Guerrero, J.D., Martinez-Sober, M., Magdalena-Benedito, J.R., Serrano Lopez,
A.J.: Handbook of Research on Machine Learning Applications and Trends: Algorithms,
Methods, and Techniques. IGI Global, Hershey (2010). doi:10.4018/978-1-60566-766-9

13. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220,
671–680 (1983)

14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of
state calculation by fast computing machines. J. Chem. Phys. 21(1087), 1087–1091 (1953)

15. Yoshikawa, M., Yamauchi, H., Terai, H.: Hybrid architecture of genetic algorithm and
simulated annealing. Eng. Lett. 16(3), EL_16_3_11 (2012)

16. Chervenak, A., Schuler, R., Ripeanu, M., Amer, M.A., Bharathi, S., Foster, I., Kesselman,
C.: The globus replica location service: design and experience. IEEE Trans. Parallel Distrib.
Syst. 20(9), 1260–1272 (2009)

17. Gandomkar, M., Vakilian, M., Ehsan, M.: A combination of genetic algorithm and simulated
annealing for optimal DG allocation in distribution networks. In: Proceedings of Canadian
Conference on Electrical and Computer Engineering, pp. 645–648 (2005)

136 R. Kingsy Grace and R. Manimegalai

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.4018/978-1-60566-766-9

Energy Efficient SNR Based Clustering
in Underwater Sensor Network

with Data Encryption

Sahu Bandita1(B) and Khilar Pabitra Mohan2

1 Padmanava College of Engineering, Rourkela, India
bandita.sahu@gmail.com

2 National Institute of Technology, Rourkela, India

Abstract. In Under Water Sensor Network (UWSN), design of cluster-
ing protocol is challenging due to the energy constrained sensor nodes.
Therefore, energy saving is considered to be an important issue. In
this paper, a new clustering protocol is proposed which is named as
energy efficient SNR based clustering in UWSN with Data Encryption
(EESCDE). Using this, one percent improvement in the residual energy
as compared to the algorithm ESRPSDC is achieved.

Keywords: Signal-to-noise ratio · Cluster head · Data encryption ·
Residual energy

1 Introduction

In UWSN, number of sensing devices are used and called as sensor nodes [1–3].
These nodes are responsible for gathering, processing and transmitting the data
to the specified sensor node. A large number of applications are enabled by
UWSN such as monitoring the environmental condition for scientific applica-
tion, navigation assistance, oil monitoring, disaster prevention and many more.
Underwater Sensor Networks (UWSN) [4] use acoustics signal as its communi-
cation media [2] as propagation delay of the acoustic signal is 1500 m/s that is
higher than that of the radio signal.

The proposed protocol is used for UWSN for short term application to mon-
itor the underwater environment and improve the residual energy.

2 Related Work

Several clustering [7] techniques have already been developed. Table 1 describes
various protocols and their applications.

In UWSN model, a UWSN [4] is modeled as a graph G= (V, E) where,
set of vertices V= V1, V2, V3,Vn and set of edges E= E1, E2, E3,EM . If a
data d comes under the sensing range r of a sensor node Si, the data d can be

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 137–141, 2016.
DOI: 10.1007/978-3-319-28034-9 18

prashant.anantharaman.gr@dartmouth.edu

138 S. Bandita and K. Pabitra Mohan

sensed. Similarly a node Si can communicate with another sensor node Sj , if
and only if, the distance(Si, Sj) <= c(communicationrange).

Energy and Data model includes different types of consumed energy.
The parameter b1 is the total packet size of a cluster, which can be obtained

as, b1 = b ∗ number of sensor nodes in that cluster.

3 Proposed Algorithm

It consists of four phases such as: Initialization phase, CH selection phase, Data
encryption phase, and Data transmission phase. In initialization phase, nodes
are deployed, assigned with some identification, and parameters are initialized.

prashant.anantharaman.gr@dartmouth.edu

Energy Efficient SNR Based Clustering 139

In the second phase, the variables numclust and clusterindex are initialized
to zero. Depending on the computed euclidean distance of nodes with respect
to BS, SNR value [4] is obtained. The SNR value is computed as the difference
between the received power signal and noise power in DB.

Data encryption phase performs encryption by applying the Hill Cipher [10].
So as to encrypt a block of data at a time,it is useful. The cryptanalysis of this
type of cipher is difficult because the key size is an m × m matrix. Each entry
in the matrix can have values between 1 to 1499 (the chosen prime number). As
the size of the key domain became 1499m×m, the brute-force attack is extremely
difficult. The cryptanalysis of the known-plain text is also not so easy. As the key
matrix is not transmitted, man in middle attack is not possible. If the residual
energy of the CH becomes less than the threshold value, then that node cannot
act as a CH for further transmission.

In data transmission phase, transmission process starts after the cluster [5]
is created and the TDMA scheduled is derived. To avoid the replay attack, a
nonce is provided by the CH. If the hashed value of on both side CH and NCH
is matched,data transmission process is initiated.

4 Simulation and Results

In this section, we have evaluated the proposed model using network simulator
NS3. In a 100 m × 100 m planar square region, 50 sensor nodes are deployed
randomly (Table 2).

Table 2. Simulation Parameters

Parameter Value Parameter Value

Packet size 2 Kb Topology Random

Sensor nodes type Passive omnidirectional Number of cluster 5

Threshold energy 1.5 j Initial energy 2.4 j

Initial battery power 3.3 volt Depth 4 m

Transmission power 2 w Frequency 2.4 GHz

Data rate 6 Kbps Communication range 20 m

Fig. 1. Comparison of network size vs residual energy

prashant.anantharaman.gr@dartmouth.edu

140 S. Bandita and K. Pabitra Mohan

Figure 1 shows the energy utilization on increasing the network size. Figure 2
describes that on increasing message complexity the no transmission also
increases, and the residual energy decreases. It is observed in Fig. 3 that this
protocol is well suited for UWSN as compared to TWSN. Figure 4 shows the
comparison of TL of the protocols esrps and eescde. In Fig. 5 the position of the
CHs are compared in UWSN and Terrestrial WSN.

Fig. 2. Comparison of message complexity vs residual energy

Fig. 3. Comparison of SNR vs distance

Fig. 4. Comparison of transmission loss vs distance

Fig. 5. Comparison of CH position in a 100 × 100 grid of UWSN and TWSN

prashant.anantharaman.gr@dartmouth.edu

Energy Efficient SNR Based Clustering 141

5 Conclusion

This cluster model is an energy-based model, which has been developed and sim-
ulated using the Network simulator NS3. Using this protocol, 1 percent improve-
ment in residual energy has been achieved.

References

1. Abbasi, A.A., Younis, M.: A Survey on Clustering Algorithms for Wireless Sensor
Networks Computer Communications. Elsevier, New York (2007)

2. Akyildiz, I., Pompili, D., Melodia, T.: Challenges for efficient communication in
underwater acoustic sensor networks. ACM Sigbed Rev. 1, 3–8 (2004)

3. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks:
research challenges. Ad hoc Netw. 3, 257–279 (2005)

4. Ganesh, S., Amutha, R.: Efficient and secure routing protocol for wireless sensor
networks through snr based dynamic clustering mechanisms. J. Commun. Netw.
15, 422–429 (2013). Ad hoc and sensor networks, wireless networks, 2007 - Springer

5. Li, L., Dong, S., Wenl, X.: An energy efficient clustering routing algorithm for
wireless sensor networks. J. China Univ. Posts Telecommun. 13, 71–75 (2006)

6. Handy, M.J., Marc, H., Dirk, T.: Low energy adaptive clustering hierarchy with
deterministic cluster-head selection. In: 4th International Workshop on Mobile and
Wireless Communications Network. IEEE (2002)

7. Chen, G., Li, C., Ye, M., Jie, W.: An unequal cluster-based routing protocol in
wireless sensor networks. Wireless Netw. 15(2), 193–207 (2009)

8. Lindsey, S., Cauligi, S.R.: PEGASIS: power-efficient gathering in sensor informa-
tion systems. In: Aerospace Conference Proceedings, vol. 3. IEEE (2002)

9. Yi, S., et al.: PEACH: power-efficient and adaptive clustering hierarchy protocol
for wireless sensor networks. Computer Commun. 30(14), 2842–2852 (2007)

10. Toorani, M., Abolfazl, F.: A secure variant of the hill cipher. In: IEEE Symposium
on Computers and Communications, ISCC 2009. IEEE (2009)

prashant.anantharaman.gr@dartmouth.edu

Collaborative Access Control Mechanism
for Online Social Networks

Nemi Chandra Rathore(B), Prashant Shaw, and Somanath Tripathy

Department of Computer Science and Engineering,
Indian Institute of Technology, Patna, India
{nemi,prashant.cs11,som}@iitp.ac.in

Abstract. Online Social Networks (OSNs) offer an attractive mean for
digital social interactions and information sharing among the users. At
the same time, it raises a number of security and privacy issues. Espe-
cially, there is no efficient mechanism to enforce privacy over data associ-
ated with multiple users. This paper proposes a privacy preserving mech-
anism to allow the users to control access of their shared resources in a
collaborative manner. We have developed a Facebook application “mse-
cure” and made a ‘survey based user study’ of the app with a user base
of (n = 50). The results of the study reveals popularity of it among users.
The study indicates that users are still concerned about the privacy of
their shared contents and they believe that a tool like “msecure” could
be useful for managing their shared images and other shared contents.

Keywords: Privacy · Multi-party resources · Trust · Stakeholders

1 Introduction

Emergence of Online Social Network (OSN) is a major technological phenomenon
seen in recent years that has united millions of people across the globe. OSNs are
webbased platforms that offer various types of information sharing services to their
users. These services are designed to enable peoples to share their personal and
public information with their family, friends, colleagues and even strangers [10].
Some of the giant OSNs are Facebook, Twitter, Google+. Facebook, itself claims
1.49 billion monthly active users [6].

Almost all social networks allow their users to have a personal profile con-
taining personal attributes. Through OSNs users interact with each other for
variety of purposes. During interactions, users share large volume of informa-
tion in form of posts, comments, pictures, videos and many more. Many times,
these contents reveal sensitive and personal information about the users or their
friends. It results in potential risk to their privacy. Moreover, the users are often
either unable to figure out or unaware about the audience that can access their
resources. The situation becomes worse when the resource is shared among mul-
tiple users (i.e. multi-party resources) who may have different access preferences.
For addressing these critical issues, existing OSNs allow the user to set the tar-
get audience for the data items exclusively owned by him. For the data items
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 142–147, 2016.
DOI: 10.1007/978-3-319-28034-9 19

prashant.anantharaman.gr@dartmouth.edu

Collaborative Access Control Mechanism for Online Social Networks 143

belonging to more than one user, OSNs offer privacy protection mechanisms
that are either too loose or too restrictive. So, there is a need for an effective
and flexible multi-party access control mechanism where all the stakeholders can
specify their own access preferences collaboratively.

A number of relationship-based access control models have been proposed
to protect privacy of OSN users in [2–4,7,9]. These models exploit relationships
between users and resources, to control the access of user data. Unfortunately,
none of these solutions address the problem of controlling the access of multi-
party resources. Recently, different solutions for multi-party access control have
been proposed [1,8,10]. The limitations of these solutions include the inflexi-
bility and user-unfriendliness. Also, these models ignore the trust level between
controllers of the content and its requester which is the important parameter
taken into consideration in real life, while sharing sensitive content with others.

In this paper, we propose a collaborative access control model (CACM) to
control the access of multi-party contents that considers the level of trust each
stakeholder of the resource have on the requesting user. We also have developed
a prototype application for Facebook to show its effectiveness.

The organization of the paper is as follows. Section 2, describes the proposed
collaborative access control mechanism (CACM). Section 3 provides details
about implementation and evaluation of the mechanism in the form of an app
named as msecure. The survey study and results are discussed in Subsect. 3.1 to
understand the popularity this tools. Section 4 concludes the work.

2 System Model and the Proposed Mechanism

2.1 System Model

OSN is a relationship network with a set of user groups and data items. Let L
be the finite set of labels representing the relationships supported by OSN. D is
the set of all the data items/resources/contents1 uploaded to OSN by the users.
The relationship network of OSN can be represented as a directed labeled graph,
G = (V,E), where a node v ∈ V denotes a user and each directed edge e ∈ E rep-
resents the relationship between two users. Formally, an edge (vi, vj) ∈ E labeled
with l ∈ L is represented by a 4-tuple, (vi, vj , l, t), where 0 ≤ t ≤ 100 represents
trust of vi for vj . Every OSN user v ∈ V have a set of data items Dv. These
resources can be classified in two classes namingly exclusive resources and multi-
party resources. A data item d ∈ Dv owned by more than one user is called multi-
party resource, otherwise, it is referred as exclusive or single-party resource.

2.2 Collaborative Access Control Mechanism (CACM)

The major objective of our proposed technique CACM is to preserve privacy suit-
ably, for the contents of multiple stakeholders. Collaborative policy specification
is the primary component of CACM that uses user trust discussed in this section.
Following terms are used to describe CACM.
1 In this paper, we use the terms resource, content and data item as synonyms.

prashant.anantharaman.gr@dartmouth.edu

144 N.C. Rathore et al.

– Owner: Let d ∈ Dv be a data item in the space of a user v ∈ V in the social
network. The user v is called the owner of data item d.

– Stakeholder: Let d ∈ Dv be a data item in the space of the user v ∈ V , in
the social network. Let Sd ⊂ V be the set of users associated with d. A user
v′ ∈ V is called a stakeholder of d, if v′ ∈ Sd.

– Trust Level: Trust Level is the amount of trust (or degree of intimacy)
a user v has on his direct friends on a scale of 0–100. The trust of users
v1 on v2 is represented as T v2

v1
. Every OSN user assigns a trust level to his

direct connections in his network. Our mechanism uses trust level between
the controllers and the requester to make any access decision.

Computing Trust Level. For deciding the trust level of his/her direct friends
a user has to divide its friends into different groups like Family, Close, Normal,
Public. Each group has a range (denoted by pair min-max) of trust values and
a default trust value TG (which is the minimum value of the range). User can
change the values of trust within the specified range for each friend individually.
For instance the ranges (minimum – maximum) for the different groups which
could be defined as: (i) Family: 100–76 (ii) Close Friends: 75–51 (iii) Normal
Friends: 50–26 (iv) Public: 25–0.

Collaborative Policy Specification. Let a user v ∈ V uploads a resource d
in his user space. Let Sd be the set of all the stakeholders of d. After the upload
of d, CACM invites all the stakeholders of d to define the collaborative access
policy for it. The policy specification is done as follows:

– Each stakeholder v′ ∈ Sd specifies the minimum trust level tv
′

min need to be
possessed by the requester to access d.

– The average trust threshold (T d
avg) and minimum trust threshold (T d

min) for d
are calculated as follows.

T d
avg = �

∑
v′∈V (tv

′
min)

|Sd| �; T d
min = min{tv′

min : v′ ∈ Sd} (1)

Access of d to the requesting user z ∈ V is given only if, the following equation
is satisfied:

1
|Sd|

(
m∑

i=1

T z
i

)

≥ T d
avg; T z

i ≥ T d
min,∀i (2)

If z is not a direct friend of any user from the set Sd, but have a mutual friend
k with stakeholder v ∈ Sd, then the trust for z can be computed as follows:

T z
k + T k

v

2
→ T z

v ; v ∈ Sd (3)

This is to note that k is the mutual friend of v and z such that T k
v is maximum.

If z neither have a direct friend nor a mutual friend with any user from the set
Sd, then trust level of z is set to 0.

prashant.anantharaman.gr@dartmouth.edu

Collaborative Access Control Mechanism for Online Social Networks 145

3 Implementation and Evaluation

We have developed a Facebook Canvas app “msecure”, which has been provided
with the permissions for accessing user information like public profile, photos,
publish actions, email and friends of the users who are using the application. The
application development uses Apache Tomcat version 2.2.24., MYSQL version
5.1.61-rel13.2-log, PHP version 5.2.17.

At present, this application is limited to the access control of photos only but
can be extended to other type of multi-party resources later. Figure 1(a) explains,
the design of the application. When a Facebook user accesses the application,
and gives it, the required permissions, the Facebook server sends request to the
application server on which the application is hosted. When the process is com-
pleted the application server accesses the Facebook Graph API [5] and retrieves
the required data. With the data collected, it implements the mechanism on its
back end. After the application of CACM logic, results are posted back on Face-
book through the Graph API. Figure 1(b) shows the homepage of “msecure”.
The homepage features several options as described below:

– msecure Profile: This option shows the profile information of the currently
logged in user like profile id, name, email-id of the user.

– Trust Values: This option allows the users to group their friends and set
trust values for them.

– Contents: This option forms the main part of the application. Using this
option the user can apply the access policies easily. It displays a gallery con-
taining the images of the logged in users. The user can select one of these
images and proceed further for setting the custom privacy of the photograph.
After selecting a photograph the user is displayed a page that contains the
photograph with options like View photograph details, Current Owner’s Infor-
mation, Participating stakeholders, Set Privacy for Photograph and Delete
previous privacy settings.

– Instructions: The instruction section elaborates the steps the user has to
undergo for applying the mechanism onto a photograph.

– Feedback: Feedback section is for the user to apply feedback to the developers
of the application.

Fig. 1. msecure Design and Interface

prashant.anantharaman.gr@dartmouth.edu

146 N.C. Rathore et al.

– Privacy Policy: Privacy policy shows and explains how the application
secures data of the logged in user.

3.1 Survey and Results

CACM is inspired by the fact that most of us share our private and sensitive
information with others according to the amount of trust we have on them. It
allows all the stakeholders of a data item to specify the trust level which would be
required to access the data item at the time of collaborative policy specification.
Then, it calculates average threshold and minimum threshold trust level that
are stored in form of the access policy of the resource.

We conducted a survey study among Facebook users that include students,
research scholars and faculties from IIT, Patna, to examine whether users would
like to perceive tools such as msecure as being useful. Further, to know whether
they intend to adopt such tools to empower their collaborative privacy control
with their social groups.

Among the 50 users participated in the study, 43 were males and 7 were
females. Number of people who reported using the Facebook application at least
once in a week were 39. Users were given a short demo about the working of the
application and then after a usage of the application for 4 days, a feedback was
taken from them on a set of questions. Table 1, shows the results of survey.

Many users vowed to use the application on the regular basis. Most of the
users feel that the interface of the application is very user friendly. Moreover,
more than 90 % of users felt that using the application helped them to secure
the privacy of the contents effectively. The results of the survey indicates the
popularity of our model among users. Following are the features and advantages
of CACM:

Table 1. Results of the survey

Questions (Rate on the scale of 5 to 1) 5 4 3 2 1

How often would you like to use the application? 32 8 7 3 -

Do you intend to install this application on your Facebook profile
in the near future?

3 10 8 2 -

Do you predict that you will use this application in near future? 33 9 4 4 -

Using the application helped me protect my shared photographs
better

41 8 1 - -

User interface of this interface was user friendly 46 3 1 - -

Instructions given in the application makes it easy to use 42 8 - - -

Interaction with the application does not require much of mental
effort

41 - 9 - -

There is high potential risk involved in sharing personal
information on Facebook

48 2 - - -

I would like to see more such applications on Facebook 39 1 9 -

prashant.anantharaman.gr@dartmouth.edu

Collaborative Access Control Mechanism for Online Social Networks 147

– It allows controllers of the resource to share it only with users whom they
trust.

– The mechanism has been popular among the tested user base.
– About 80 % data processing is done in real time by the application.
– The application does not use any centralized data manager for implementation

of the mechanism.
– The application has a light and sleek user interface making it easy for novice

users to understand the application.

4 Conclusion and Future Work

In this paper, we have proposed a simple trust-based collaborative access control
mechanism tailored to multiple stakeholders. We also have developed a Facebook
app to realize the correctness and effectiveness the scheme. We conducted a
survey study which confirms that our application is effective and appreciated
by all the users. At present, our application allows only the trust level between
stakeholders and requester to control the access of a multi-party resource. In
future, we are planing to extend CACM to include more attributes to define
access policies for the resources. Moreover, we also would like to add a semi-
automatic mechanism to help the users to assign trust value to their contacts.

References

1. Carminati, B., Ferrari, E.: Collaborative access control in on-line social networks.
In: 2011 7th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), pp. 231–240 (October 2011)

2. Carminati, B., Ferrari, E., Perego, A.: Rule-based access control for social networks.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol.
4278, pp. 1734–1744. Springer, Heidelberg (2006)

3. Cheng, Y., Park, J., Sandhu, R.: Relationship-based access control for online social
networks: Beyond user-to-user relationships. In: 2012 International Conference on
Social Computing (SocialCom), Privacy, Security, Risk and Trust (PASSAT), pp.
646–655 (September 2012)

4. Cheng, Y., Park, J., Sandhu, R.: Attribute-aware relationship-based access control
for online social networks. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol.
8566, pp. 292–306. Springer, Heidelberg (2014)

5. Facebook. Facebook graph api, v2.4 (2015)
6. Facebook. Facebook news room (June 2015)
7. Fong, P.: Relationship-based access control: protection model and policy language.

In: Proceedings of the First ACM Conference on Data and Application Security
and Privacy, pp. 191–202. ACM, New York, USA (2011)

8. Hu, H., Ahn, G.J., Jorgensen, J.: Multiparty access control for online social net-
works: model and mechanisms. IEEE Trans. Knowl. Data Eng. 25(7), 1614–1627
(2013)

9. Pang, J., Zhang, Y.: A new access control scheme for facebook-style social networks.
CoRR, abs/1304.2504 (2013)

10. Squicciarini, A., Xu, H., Zhang, X.L.: Cope: enabling collaborative privacy man-
agement in online social networks. J. Am. Soc. Inf. Sci. Technol. 62, 521–534 (2011)

prashant.anantharaman.gr@dartmouth.edu

i-TSS: An Image Encryption Algorithm Based
on Transposition, Shuffling and Substitution Using

Randomly Generated Bitmap Image

Kanagaraj Narayanasamy(✉) and Padmapriya Arumugam

Department of Computer Science and Engineering, Alagappa University,
Karaikudi 630 003, Tamilnadu, India

kanagaraj.n.in@ieee.org, mailtopadhu@yahoo.co.in

Abstract. In the digitalized era, an enormous amount of digital images are being
shared over the different networks and also available in different storage mediums.
Internet users enjoy this convenient way of sharing images and at the meantime,
they need to face the consequences like chosen plain-text, statistical, differential
attacks, and brute-force attack. These attacks and noises create the need of
enhancing the image information security. An image encryption algorithm needs
to be robust. An image encryption algorithm (i-TSS) based on transposition,
shuffling, and substitution is presented in this paper, that provides better security
to the image. This algorithm is implemented using Java. By assessing the results
of image quality metrics, this algorithm proves to be secured and robust against
the external attacks.

1 Introduction

Cryptography is one of the best ways to communicate secretly even over the insecure
channels [1]. Image encryption means converting the original image to disguised form,
just like text encryption. AES, RSA and IDEA [3–5] were widely used text encryption
algorithms. These text encryption algorithms can be modified to handle the image data,
but the textual data differ from the image data. For instance, if the RGB color model
based image’s size is 512 × 512 then there would be 786432 numbers of data to be
handled. This much of data can be handled by the algorithms which are developed
particularly for the image or Multimedia data [2].

Usually, an image encryption system is made up of several components (Fig. 1). As
illustrated in the figure, the image is encrypted using an algorithm and a respective key
to produce the encrypted/disguised image. Similarly, the encrypted image is decrypted
using the key to get the plain image.

According to the usage of the key, the algorithm technique differs. In Symmetric
technique, encryption key and decryption key are same; and in Asymmetric technique,
encryption key and decryption key differ. It is possible for an adversary to obtain the
original image without the respective key by means of cryptanalysis. The proposed
algorithm comes under the Symmetric key cryptographic technique.

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 148–156, 2016.
DOI: 10.1007/978-3-319-28034-9_20

prashant.anantharaman.gr@dartmouth.edu

Encryption Decryption

Key

Attack

Key

Fig. 1. Process of image encryption and decryption

The security of the image is the primary concern in this paper. The traditional image
encryption algorithms such as AES, DES, RSA and the family of ECC based algorithms
may not be the best one to choose for image encryption, specifically for speed and
applicability in real-time applications. In recent years, several image encryption algo‐
rithms [6–12] have proposed. Zang and Liu [6] proposed an image encryption method‐
ology based on permutation – diffusion based image encryption system. The position of
the image pixels are shuffled to obtain high plain image sensitivity. The key and plain
image decides the key stream in the diffusion step. Lin and Wang [7] proposed an image
encryption based on chaos with the Piece Wise Linear (PWL) memristor in Chua’s
circuit. Diaconu et al. [8], Dascalescu and Boriga [9], and Dalhoum et al. [10] have
proposed various image encryption algorithms based on Image scrambling technique.
Askar et al. [11] and Zhang et al. [12] have proposed image encryption algorithms based
on the chaotic economic map and DNA encoding respectively. Both these algorithms
use a chaotic map, but in the [12] logistic chaotic map is used in the shuffling phase, and
further DNA coding, and Chebyshev’s chaotic map is used in algorithm in different
phases. The proposed algorithm is seriously tested using different images and compared
with other research works [7, 11, 12] to prove that the proposed algorithm is more
effective in resisting attacks.

The rest of the paper is organized as follows. In the second section, the proposed
algorithm is explained; in the next section, the experimental study is done; in the fourth
section, the results and discussion are done to justify the efficiency of the algorithm; and
the last section deals about the conclusion of the proposed algorithm.

2 Proposed Algorithm

The proposed image encryption algorithm i-TSS, basically works based on the Trans‐
position, Shuffling, and Substitution processes. Transposition is the process of inter‐
changing pixel’s position. During Shuffling, the pixels are scrambled in order to confuse
the adversaries. Substitution process is done with the help of a Randomly Generated
bitmap image (RGbmp). RGbmp is created with the randomly generated values
according to the size of the input image. Those values are assigned to Red, Green, and
Blue components to form RGbmp. The transposed and shuffled image is XOR-ed with
the RGbmp to obtain the better encrypted image as shown in Fig. 2.

i-TSS: An Image Encryption Algorithm 149

prashant.anantharaman.gr@dartmouth.edu

Plain Image

TransImage

Shuffled image

Encrypted image

RGbmp image

Mode of Transposition

Chosen Value (CV)

Mode of Shuffling

T

S

Fig. 2. Overall workflow of Proposed Algorithm (i-TSS)

2.1 Transposition Process

This is the first process in the algorithm. The transposition process starts from an initial
position, most probably from the center of the image or nearby position from the center
of the image. The initial position changes according to a ‘Chosen Value (CV)’. This CV
is chosen from the RGbmp with some simplified constraints. The pixels are taken in a
spiral manner from the center of the image and repositioned from top to bottom. The
CV also decides the number of transposition rounds. This transposition process will
totally scramble the plain image.

2.2 Shuffling and Substitution Processes

In the second phase, shuffling the pixel’s position is done. The transpositioned-image
(TransImage) enters into this stage as input. The TransImage is shuffled either in even
or odd order. The order of shuffling is determined based on the chosen value (CV). In
the last phase, the Shuffled-image is XOR-ed with Randomly Generated bitmap image
(RGbmp). The XOR operator has been used in this phase because it has distinctive
properties when compared with other operators [13]. The Red, Green, and Blue values
of the shuffled image are XOR-ed with Red, Green, and Blue values of the RGbmp. The
resultant images possess better encryption.

150 K. Narayanasamy and P. Arumugam

prashant.anantharaman.gr@dartmouth.edu

3 Experimental Study

Experiments are done on the proposed algorithm (i-TSS) to find out the performance,
and results are taken into account to assess the robustness and secrecy of the proposed
algorithm. The images [14] with various resolutions are considered for the experimental
study. The encryption and decryption process of the algorithm is explained in this
section.

3.1 Encryption and Decryption Processes

Once the RGbmp is created, a value (CV) is chosen based on some conditions. It will
be used to determine the mode of transposition and mode of shuffling. In the transposition
process, the plain image is repositioned. The below Table 1 shows the usage of rounds
in the process of transposition.

Table 1. Peak Signal-to-Noise Ratio (PSNR) values for a transposition image with various
rounds

Transposition
(Round = 1)

Transposition
(Round = 45)

Transposition
(Round = 150)

PSNR (RGB) 28.5636 28.3612 28.3318

PSNR (RGB band) values for the various transposition images are grouped in the
above table. The PSNR (RGB) values clearly reveal the essentiality of the rounds in
transposition process. The next phase is shuffling the RGB values. The RGB values are
loaded into a one dimensional array and get shuffled in either odd or even order. This
single step of the shuffling process makes adversaries to be in the confused state. In the
last phase, the randomly generated bitmap image is used to encrypt the shuffled image.
The Red, Green and Blue values of the RGbmp are XOR-ed with the respective Red,
Green and Blue values of the shuffled image to obtain the encrypted image. The RGbmp
is sent as a matrix key file to the receiver end.

In the decryption phase, the RGbmp is recreated using the received matrix key file from
the sender. The CV is retrieved from the RGbmp by the same condition used as in the
process of encryption. The processes in the encryption work are reversed to get the orig‐
inal image. In the first phase, the RGbmp is used to decrypt the encrypted image using XOR
operator. By using the CV, the mode of shuffling and transposition can be found and those
findings are used to do the reverse processes of shuffling and transposition.

3.2 Execution Time

The average encryption and decryption speed is determined using Lena image with
different sizes varying from 64 × 64 to 1024 × 1024 pixels are 982 ms and 1003 ms
respectively on personal computer equipped with an Intel processor (Core i3) with clock
speed of 1.7 GHz, 2 GB of RAM and 520 GB of Hard disk capacity.

i-TSS: An Image Encryption Algorithm 151

prashant.anantharaman.gr@dartmouth.edu

4 Results and Discussion

The techniques like PSNR [15, 16] and Mean Squared Error (MSE) [17] are the two
commonly adopted image quality measures, in which PSNR is actually based on the
value of MSE. These two measures are easy to use and have a convenient procedure to
implement in mathematical aspect. Mostly all metrics compare the original image with
the distorted image and provide the result about the difference or similarity. Later, these
metrics are found to be insufficient to assess the quality. New metrics like Structural
Similarity Index Measure (SSIM) [18], NPCR (Number of Pixels Change Ratio) [19],
Unified Averaged Changed Intensity (UACI) [19] have introduced. PSNR, MSE, NPCR,
and UACI metrics have taken into account to assess the encryption work.

4.1 Histogram

Color Histogram is a graphical representation of the colors distribution in an image. If
the histogram exhibits the uniform distribution of colors, then the adversaries cannot get
any information through statistical attacks [20]. Table 2 illustrates the histograms (RGB)
plotted for various original images and histograms (Only Red band) plotted for respec‐
tive encrypted images. The histograms and the mean values (Table 3) clearly show the
uniformity in distribution of colors. This reveals that the encrypted images of i-TSS
algorithm can easily withstand the statistical attacks.

Table 2. Histogram results for original and respective encrypted images

Original Image Histogram Encrypted Image Histogram

Barbara

Goldhill

Lena (Lenna)

152 K. Narayanasamy and P. Arumugam

prashant.anantharaman.gr@dartmouth.edu

Table 3. Mean values for original and respective encrypted image

Image name Mean value (original image) Mean value (encrypted image)

Barbara Red: 134.42 Red: 127.59

Green: 102.04 Green: 127.39

Blue: 93.41 Blue: 127.24

Goldhill Red: 137.84 Red: 127.11

Green: 138.82 Green: 127.36

Blue: 109.45 Blue: 127.48

Lena Red: 177.24 Red: 128.32

Green: 127.92 Green: 127.92

Blue: 99.17 Blue: 127.13

4.2 PSNR and MSE

PSNR is used to compute the ratio between the maximum possible value of a signal and
the power of distorting noise that changes the representation quality [16]. PSNR is
expressed in decibel (dB) unit. PSNR is based on the MSE value. MSE is used to calcu‐
late the amount of deviation between the original and its disguised image. If the
comparing images are identical then the MSE value will be zero and PSNR would be
infinity. If the PSNR value is less; then, the quality of the image encryption is better.
PSNR and MSE values are calculated between different original image and its encrypted
image; and it is tabled in Table 4.

Table 4. PSNR and MSE values between the original and respective encrypted image

Image name PSNR MSE

Barbara 20.5113 4.461

Goldhill 19.7036 5.161

Lenna 20.1267 4.822

4.3 NPCR and UACI

In differential attack, an attacker tries to find the plain image by changing a specific pixel
in image and traces the differences in the respective output image. A general consider‐
ation for all encryption algorithms is that the encrypted image must be different from its

i-TSS: An Image Encryption Algorithm 153

prashant.anantharaman.gr@dartmouth.edu

original image. This deviation can be measured by means of two criteria: NPCR and
UACI. The NPCR is used to measure the rate of change in an encrypted image when a
bit is changed in the plain image. The UACI is used to calculate the unified average
changing intensity between two encrypted images with a deviation in only one bit in
respective plain images. In Table 5, NPCR and UACI values are tabled for different
images. In Table 6, NPCR and UACI values of the proposed algorithm are compared
with other research results and found to provide better results.

Table 5. Values of NPCR and UACI tests of encrypted images

Image name NPCR (%) UACI (%)

Lena 99.62 33.46

Goldhill 99.59 33.46

Barbara 99.60 33.46

Table 6. Comparative results of NPCR and UACI

Measure [12] [8] [9] [10] Ours

NPCR (%) 99.7017 99.489 99.431 90.126 99.62

UACI (%) 28.7051 29.006 25.032 NaN 33.46

4.4 Entropy Measure

Entropy is a statistical measure that deals with the randomness of a bundle of data.
Theoretically, if the entropy measure of the encrypted images nearly equal to 8 (sh);
then the image encryption algorithm is highly robust against entropy attack. From
Table 7, it is possible to know justify the leakage of information of the proposed algo‐
rithm against entropy attack to be negligible. Further, in Table 8 entropy measure of the
i-TSS compared with other research results, this shows the betterment in handling
entropy attack.

Table 7. Entropy values of the original images and respective encrypted image

Images Entropy

Original image Encrypted image

Lena 7.6553 7.9989

Goldhill 7.8644 7.9990

Barbara 7.6283 7.9990

154 K. Narayanasamy and P. Arumugam

prashant.anantharaman.gr@dartmouth.edu

Table 8. Comparative results of Entropy measure

Algorithm Entropy (sh)

[7] 7.9890

[11] 7.9961

[12] 7.9854

Ours 7.9990

5 Conclusion

In this paper a new transposition, shuffling and substitution based cryptosystem has been
introduced for image encryption. Improving the randomness in transposition process is
the main advantage of the system. The results of a security analysis for three different
images show the resistance to chosen plain-text, differential and statistical attacks on
the encrypted images. In addition to these, a large key space makes the brute force attack
to be impractical; the entropy measure of the proposed algorithm is close to the principle
value 8 and the average execution time is 993 ms. Hence, it is suitable for the practical
usage in real-time. In future, this work can be combined with chaotic functions to
enhance the security of the encryption process.

References

1. Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996). ISBN 0-471-11709-9
2. Soleymani, A., Ali, Z., Nordin, M.: A survey on principal aspects of secure image

transmission. In: Proceedings of World Academy of Science, Engineering and Technology,
pp. 247–254 (2012)

3. Stalling, W.: Cryptography and Network Security: Principles and Practice, 6th edn. Prentice
Hall, Upper Saddle River (2013). ISBN 978-0133354690

4. Mollin, R.A.: An Introduction to Cryptography. CRC Press, Boca Raton (2006)
5. Vanstone, S.A., Menezes, A.J., Oorschot, P.C.: Handbook of Applied Cryptography. CRC

Press, Boca Raton (1996)
6. Zhang, G., Liu, Q.: A novel image encryption method based on total shuffling scheme. Opt.

Commun. 284, 2775–2780 (2011)
7. Lin, Z., Wang, H.: Efficient image encryption using a chaos-based PWL memristor. IETE

Tech. Rev. 27, 318–325 (2010)
8. Diaconu, A.V., Costea, A., Costea, M.A.: Color image scrambling technique based on

transposition of pixels between RGB channels using Knight’s moving rules and digital chaotic
map. In: Mathematical Problems in Engineering (2014)

9. Dascalescu, A.C., Boriga, R.E.: A novel fast chaos-based algorithm for generating random
permutations with high shift factor suitable for image scrambling. Nonlinear Dyn. 74, 307–
318 (2013)

10. Dalhoum, A.L.A., Mahafzah, B.A., Awwad, A.A., Aldamari, I., Ortega, A., Alfonseca, M.:
Digital image scrambling using 2D cellular automata. IEEE Trans. Multimedia 19, 28–36
(2012)

i-TSS: An Image Encryption Algorithm 155

prashant.anantharaman.gr@dartmouth.edu

11. Askar, S.S., Karawia, A.A., Alshamrani, A.: Image encryption algorithm based on chaotic
economic model. In: Mathematical Problems in Engineering (2015)

12. Zhang, J., Fang, D., Ren, H.: Image encryption algorithm based on DNA encoding and chaotic
maps. In: Mathematical Problems in Engineering (2015)

13. http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/xor.html. Accessed 10 October
2015

14. http://sipi.usc.edu/database/. Accessed 10 October 2015
15. http://in.mathworks.com/help/images/image-quality-metrics.html and http://in.mathworks.com/

help/images/image-quality.html. Accessed 10 October 2015
16. Peak Signal-to-Noise Ratio as an Image Quality Metric: White paper published by National

Instruments China (2013)
17. Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it?—A new look at signal fidelity

measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error

visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
19. Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption.

Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT), April Edition,
31–38 (2011)

20. Shannon, C.: Communication theory of secrecy systems. Bell Syst. Techn. J. 28, 656–7151
(1949)

156 K. Narayanasamy and P. Arumugam

prashant.anantharaman.gr@dartmouth.edu

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/xor.html
http://sipi.usc.edu/database/
http://in.mathworks.com/help/images/image-quality-metrics.html
http://in.mathworks.com/help/images/image-quality.html
http://in.mathworks.com/help/images/image-quality.html

A Type System for Counting Logs
of Multi-threaded Nested Transactional

Programs

Anh-Hoang Truong1(B), Dang Van Hung1, Duc-Hanh Dang1,
and Xuan-Tung Vu2

1 VNU University of Engineering and Technology, Hanoi, Vietnam
hoangta@vnu.edu.vn

2 Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. We present a type system to estimate an upper bound for the
resource consumption of nested and multi-threaded transactional pro-
grams. The resource is abstracted as transaction logs. In comparison to
our previous work on type and effect systems for Transactional Feather-
weight Java, this work exploits the natural composition of thread creation
to give types to sub-terms. As a result, our new type system is simpler
and more effective than our previous one. More important, it is more
precise than our previous type system. We also show a type inference
algorithm that we have implemented in a prototype tool.

Keywords: Resource bound · Software transactional memory · Type
systems

1 Introduction

Software Transactional Memory [9] has been introduced as an alternative to the
locked-based synchronization for the shared memory concurrency. It has become
a focus for intensive theoretical researches and practical applications for quite a
long time. One of the recent transactional models that support advanced features
of programming such as nested and multi-threaded transactions is described in
[6]. In this model, a transaction is said to be nested if it is contained in another
transaction; the former is called child transaction, and the latter is called parent
transaction. The rule is that the child transaction must commit before their par-
ent does. Furthermore, a transaction is multi-threaded when threads are created
and run inside the transaction. These threads when created, run in parallel with
the thread executing that transaction. For independent manipulation of shared
variables, a child thread will make a copy of all variables of its parent thread.

This research is funded by Vietnam National Foundation for Science and Technol-
ogy Development (NAFOSTED) under grant number 102.03-2014.23. The research
is also partly supported by the research project QG.14.06, Vietnam National Uni-
versity, Hanoi.

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 157–168, 2016.
DOI: 10.1007/978-3-319-28034-9 21

prashant.anantharaman.gr@dartmouth.edu

158 A.-H. Truong et al.

When the parent thread commits a transaction, all the child threads created
inside that transaction must join the commit of their parent. We call this kind
of commits joint commits, and the time when these commits occur joint commit
point. Joint commits act as the synchronizations of parallel threads.

In the implementations in practice, each transaction has its own local copy of
memory called log to store shared variables for independent accesses during its exe-
cution. Each thread may execute a number of nested transactions, and thus may
contain a corresponding number of logs. In addition, a child thread also stores a
copy of its parent’s logs so that it can be executed independently with its parents
until a joint commit point. At the time when all child threads and their parent are
synchronized via joint commits, their own logs and the copies they keep relating
to the transaction are consulted to check for conflicts and potentially performing
a roll-back. These logs are then discarded – the corresponding memory resources
are freed. A major complication for the static analysis is that the number of logs
cloned (resource allocation) when a new thread is created is implicit and the com-
mit statements (resource deallocation) that need to synchronize with each other
are also implicit, so the resources used by these programs are difficult to estimate.

The number of cloned logs may affect the efficiency of parallel threads and
the maximal number of logs that coexist may affect the safety of the program
when the memory is limited. Therefore, a precise estimation of the upper bound
of number of coexisting logs in a multi-threaded, nested transactional memory
program plays a crucial role.

In our previous works [7,10] we gave type and effect systems for estimating
the upper bounds of number of logs that coexist at the same time. We are not
satisfied with those estimations, and take a new approach to solve the problem.
This work was initiated from our previous work [10] with the advantage that our
new system can infer more precise bound, and it is simpler with some natural
sacrifice on the compositionality. The main contributions of this work are: (1)
A simpler type system with natural composition of terms; (2) Our correctness
proofs are all briefly shown; (3) A type inference algorithm and a tool for inferring
types for the core part of the language.

Related Work. Estimating resource usage has been studied in various settings.
Hofmann and Jost [4] compute the linear bounds on heap space for a first-

order functional language. In terms of imperative and object-oriented languages,
Wei-Ngan Chin et al. [3] verify memory usages for object-oriented programs.
In [5], Hofmann and Jost use a type system to calculate the heap space bound
as a function of input for an object oriented language. In [2] the authors statically
compute upper bounds of resource consumption of a method using a non-linear
function of method’s parameters. In [1] the authors propose type systems for
component languages with parallel composition but the threads run indepen-
dently. [8] proposes a fast algorithm to statically find the upper bounds of heap
memory for a class of JavaCard programs.

prashant.anantharaman.gr@dartmouth.edu

A Type System for Counting Logs 159

Our analysis not only takes care of multi-threading – many of the cited works
are restricted to sequential or functional languages – but also of the complex and
implicit synchronization (by joint commits) structure entailed by the transac-
tional model.

The rest of the paper is structured as follows. In the next section we will
explain informally the problem and the approach by a motivating example.
Section 3 introduces the formal syntax and operational semantics of the cal-
culus. Section 4 presents a new type system. The soundness of the analysis is
sketched in Sect. 5 and then, a type inference algorithm is sketched in Sect. 6.
Section 7 is the conclusion of the paper.

2 Motivating Example

We use the following example program (see Listing 1.1) which is taken from our
previous work [7,10] as our running example to demonstrate the problem and
our new approach.

Listing 1.1. A nested multi-threaded program.

1 onacid ;// thread 0

2 onacid;

3 spawn(e1;commit;commit);// thread 1

4 onacid;

5 spawn(e2;commit;commit;commit);// thread 2

6 commit;

7 e3;

8 commit;

9 e4;

10 commit

In this program, the statements onacid and commit are to start and to close a
transaction, respectively, and must be paired. The expressions e1, e2, e3 and e4

represent subprograms. The statement spawn is to open a thread with the code
represented by the parameter of the statement. The command spawn creates a
new thread running in parallel with its parent thread. The new thread duplicates
the logs of the parent thread for storing a copy of variables of the parent thread.
In our example, when spawning e1 the main thread has opened two transactions;
so thread 1 executes e1 inside these two transactions and must do two commits to
close them. This is why after e1, thread 1 needs to execute two commit commands.

In our previous work, we allowed more freedom in splitting the whole program
term into arbitrary sub-terms and then we gave types to all these sub-terms.
This approach leads to a bit complex type systems as we have to handle quite
lot of possible combinations. In this work we restrict the way to combine terms.
We type the inner most thread first and then combine with its sibling threads
(parent) and so on.

prashant.anantharaman.gr@dartmouth.edu

160 A.-H. Truong et al.

3 The Language TFJ

Syntax. The syntax of TFJ is given in Fig. 1, and it is similar Featherweight
Java (FJ) except for the first and the last line. The first line is for defining
run time threads/processes and the last line is three commands for creating a
thread, starting and committing a transaction. These three commands make
the language multi-threaded and transactional. Other commands are of the FJ
language: L is class definition, M is method declaration, the values of v can be
reference, variable, or null, and the term e can be a value, a field access, an
assignment, a method call, a object creation in the first line for e. The second
syntax line for e is for sequencing and choice. x̄ (v̄) is vector of x (v). The detailed
explanation of the syntax was given in [7]. In this paper, we restrict ourselves to
a sub-language of TFJ in which we use only the simple form of the expression
let for sequencing. Namely, e1; e2 can be expressed by let x = e1 in e2 where x
does not occur in e2 with the assumption that no lazy evaluation applied. We
allow only this form of let from now on.

Dynamic Semantics. The semantics of TFJ is given by two sets of operational
rules: the rules for the object semantics in Table 1, and the rules for the trans-
actional and multi-threaded semantics in Table 2. The object semantics rules
are standard and similar to Featherweight Java. We highlight here only the key
points concerning creating and removing logs of the transactional and multi-
threaded semantics rules. The readers are referred to [7] for a detailed explana-
tion of the semantics. Generally, the (global) runtime environment is a collection
of threads. Each thread contains a local environment which is a sequence of logs.
For managing these threads and logs we give an id to each thread and log. The
object semantics mainly works on the local environment and does not manip-
ulate logs as well as threads. This part is similar to Featherweight Java. The
transactional and multi-threaded semantics creates and destroys threads and
logs. Now we formally define the local and global environments and explain in
more details about the transactional and multi-threaded semantics rules.

Definition 1 (Local environment). A local environment E is a finite
sequence of labeled logs l1:log1; . . . ; lk:logk, where the ith element of the sequence
consists of a transaction label li (a transaction name) and the log logi corre-
sponding to the transaction li.

Fig. 1. TFJ syntax.

prashant.anantharaman.gr@dartmouth.edu

A Type System for Counting Logs 161

Table 1. Object semantics.

E, let x = v in e → E′, e[v/x] L-RED

E, let x2 = (let x1 = e1 in e) in e′ → E, let x1 = e1 in (let x2 = e in e′) L-LET

E, let x = (if true then e1 else e2) in e → E, let x = e1 in e L-COND1

E, let x = (if false then e1 else e2) in e → E, let x = e2 in e L-COND2

read(E, r) = E′, C(ū) fields(C) = f̄

E, let x = r.fi in e → E′, let x = ui in e
L-LOOKUP

read(E, r) = E′, C(ū) write(r → C(ū) ↓u′
i , E′) = E′′

E, let x = r.fi := u′ in e → E′′, let x = u′ in e
L-UPD

read(E, r) = E′, C(ū) mbody(C, m) = (x̄, e)

E, let x = r.m(r̄) in e′ → E′, let x = e[r̄/x̄, r/this] in e′ L-CALL

r fresh extend(r �→ C(¯null), E) = E′

E, let x = new C() in e → E′, let x = r in e
L-NEW

For E = l1:log1; . . . ; lk:logk, we call k the size of E, and denote by |E|.
The size |E| is the nesting depth of transactions, namely l1 is the outer-most
transaction and lk is the inner-most one. Note that the inner-most one exists for
each thread. The empty environment is the empty sequence of labeled logs, and
is denoted by ε.

Transactional and Multi-threaded Semantics. We will give the transition
rules for the semantics in the form Γ, P ⇒ Γ ′, P ′ or Γ, P ⇒ error , where Γ
is a global environment and P is a set of processes of the form p(e). A global
environment contains local environments of threads and is defined as follows.

Definition 2 (Global environment). A global environment Γ is a finite map-
ping from thread id to its local environment, Γ = p1:E1, . . . , pk:Ek, where pi is
a thread id and Ei is the local environment of the thread pi.

We denote by |Γ | the size of Γ which is the total number of logs in Γ ,
i.e., |Γ | =

∑k
i=1 |Ei|. At the staring point, the global environment for the main

thread p1 of the program is p1 : ε. During the execution of the program, the global
environment changes according to the semantic rules. Our goal is to effectively
find an upper bound of |Γ | as it represents the number of logs in all (concurrent)
threads. Note that testing all possible paths is not feasible because of parallel
threads and the choice expression.

The global steps make use of a number of functions accessing and chang-
ing the global environment: reflect(pi, E

′
i, Γ), spawn(p, p′, Γ), start(l, pi, Γ),

intranse(Γ, l), and commit(p̄, Ē, Γ). These functions were defined in [7]. Their
brief explanations are as follows. In rule G-PLAIN, the function reflect only
update the local changes to the global environment. In rule G-SPAWN, the func-
tion spawn(p, p′, Γ) creates a new thread p′ with a cloned copy of transactions
in p, so the number of logs in p is duplicated. In rule G-TRANS, the function
start(l, pi, Γ) creates one more log with the fresh label l in thread pi. In rule
G-COMM, we denote

∐k
1 pi(ei) for p1(e1) ‖ . . . ‖ pk(ek). The rule requires k

prashant.anantharaman.gr@dartmouth.edu

162 A.-H. Truong et al.

Table 2. Transactional and threading semantics.

E, e → E′, e′ p : E ∈ Γ reflect(p, E′, Γ) = Γ ′

Γ, P ‖ p(e) ⇒ Γ ′, P ‖ p(e′)
G-PLAIN

p′ fresh spawn(p, p′, Γ) = Γ ′

Γ, P ‖ p(let x = spawn(e1) in e2) ⇒ Γ ′, P ‖ p(let x = null in e2) ‖ p′(e1)
G-SPAWN

l fresh start(l, p, Γ) = Γ ′

Γ, P ‖ p(let x = onacid in e) ⇒ Γ ′, P ‖ p(let x = null in e)
G-TRANS

p : E ∈ Γ E = ..; l : log; intranse(Γ, l) = p̄ = p1..pk commit(p̄, Ē, Γ) = Γ ′

Γ, P ‖ ∐k
1 pi(let x = commit in ei) ⇒ Γ ′, P ‖ (

∐k
1 pi(let x = null in ei))

G-COMM

Γ = Γ ′′; p : E |E| = 0

Γ, P ‖ p(let x = commit in e) ⇒ error
G-ERROR

threads to do joint commit, and each thread releases one log, so k logs are to be
removed as expressed in the function commit. k threads are all threads that are
synchronized by the joint commits. They contains one parent threads and k − 1
child threads that were directly spawned by the parent. The function intranse
identifies the k threads with the same label l for the synchronization.

Note that a global environment may contain threads with their own local
environments, and each local environment in turn contains transactions with
their own logs. Therefore, a global environment may contain transactions with
the same labels because some transactions are copied by a spawn operation.

4 Type System

Types. To represent the transactional behaviour of a term, we use a set of
four symbols (called tags or signs) {+,−,¬, �}. The tags + and − abstractly
represent the starting of a transaction and the committing of a transaction,
respectively. The tag ¬ is used for the joint commit of transactions in parallel
threads and the last one, �, is used for accumulating the maximum number of
logs created. To make it more convenient for computing on these sequences later,
we associate a tag with a non-negative natural number n ∈ N

+ = {0, 1, 2, ..} to
form tagged numbers. So our types use finite sequences over the set of tagged
numbers T

N = {+n , −n , �n , ¬n | n ∈ N
+}. We will try to give rules to associate

a sequence of tagged numbers with a term (expression) of TFJ.
During computation, a tag with zero may be produced but it has no effect to

the semantics of the sequence so we will automatically discard it when it appears.
To simplify the presentation1, we also automatically insert �0 element whenever
needed. In our type inference implementation we do not need to insert these
elements. Intuitively, for a term to type, +n (−n) means there are n consecutive
onacid (commit) in the term, and ¬n means that there are n threads needed to

1 We can avoid the insertion as shown in our implementation for the type inference
algorithm in Sect. 6.

prashant.anantharaman.gr@dartmouth.edu

A Type System for Counting Logs 163

be synchronized with some onacid in a joint commit to complete the transaction
in the term, and �n says n is the maximal number of logs created by the term.

In the sequel, let s range over T
N, T

N̄ be the set of all sequences of tagged
numbers, and S range over T

N̄ and m,n, l, .. range over N. The empty sequence
is denoted by ε as usual. For a sequence S we denote by |S| the length of S, and
write S(i) for the ith element of S. For a tagged number s, we denote tag(s)
the tag of s, and |s| the natural number of s (i.e., s = tag(s)|s|). For a sequence
S ∈ T

N̄, we write tag(S) for the sequence of the tags of the elements of S, i.e.,
tag(s1 . . . sk) = tag(s1) . . . tag(sk) and {S} for the set of tags appeared in S. We
also write tag(s) ∈ S instead of tag(s) ∈ {S} for the simplicity.

The set T
N̄ can be partitioned into equivalence classes such that all elements

in the same class represent the same transactional behaviour, and for each class
we use the most compact sequence as the representative for the class and we call
it canonical element.

Definition 3 (Canonical sequence). A sequence S is canonical if tag(S) does
not contain ‘++’, ‘−−’, ‘��’, ‘+−’, ‘+�−’, ‘+¬’ or ‘+�¬’ as subsequences, and
furthermore, |s| > 0 for all element s of S.

The intuition here is that we can always simplify/shorten a sequence S with-
out changing the interpretation of the sequence w.r.t. the resource consumption
to make it canonical: simply all the tagged zero can be removed without any
effect to the behavior of the term, and double tags can be converted to single
tags by the following seq function. The seq function below is to reduce a sequence
in T

N̄ to a canonical one. Note the pattern +− does not appear, but we can insert
�0 for �l in the last definition of seq to handle this case. The last two patterns,
‘+¬’ and ‘+�¬’, will be handled by the function jc later (Definition 8).

Definition 4 (Simplify). Function seq is defined recursively as follows:

seq(S) = S when S is canonical

seq(S �m �nS′) = seq(S �max(m,n) S′)

seq(S +m +nS′) = seq(S +(m + n) S′)

seq(S −m −nS′) = seq(S −(m + n) S′)

seq(S +m �l −nS′) = seq(S +(m − 1) �(l + 1) −(n − 1) S′)

As mentioned above, threads are synchronized by joint commits. So these joint
commits split a thread into so-called segments and only some segments can run
in parallel. For instance, in the running example of the paper e1 can run in
parallel with e2 and e3, but not with e4. With the type given to an expression
e, segments can be identified by examining the type of the expression e inside
spawn(e) for extra − or ¬. For example, in spawn(e1); e2, if the canonical
sequence of e1 has − or ¬, then the thread of e1 must be synchronized with its
parent which is the thread of e2. Function merge in Definition 6 is used in these
situations, but to define it we need some auxiliary functions.

prashant.anantharaman.gr@dartmouth.edu

164 A.-H. Truong et al.

For S ∈ T
N̄ and for a tag sig ∈ {+,−,¬, �}, we introduce the function

first(S, sig) that returns the smallest index i such that tag(S(i)) = sig. If no
such element exists, the function returns 0. A commit can be a local commit or,
implicitly, a joint commit. At first, we presume all commits be a local commit.
Then when we discover that there is no local transaction starting command (i.e.,
onacid) to match with a local commit, that commit should be a joint commit.
The following function performs that job and converts a canonical sequence (with
no + element) to a so-called joint sequence.

Definition 5 (Join). Let S = s1 . . . sk be a canonical sequence and assume
i = first(S,−). Then function join(S) recursively replaces − in S by ¬ as
follows:

join(S) = S if i = 0

join(S) = s1..si−1
¬1 join(−(|si| − 1) si+1..sk) otherwise

Since the function join is idempotent, joint sequences are well-defined and do
not contain elements with + or − tags. We also simplify it to its canonical form
so we can assume that joint sequence contains only � elements interleaved with
¬ elements. A joint sequence is used to type a term inside a spawn or a term
in the main thread. Now we can define the merge function.

Definition 6 (Merge). Let S1 and S2 be joint sequences such that the number
of ¬ elements in S1 and S2 are the same (can be zero). The merge function is
defined recursively as:

merge(�m1 , �m2) = �(m1 + m2)

merge(�m1
¬n1 S′

1,
�m2

¬n2 S′
2) = �(m1 + m2) ¬(n1 + n2) merge(S′

1, S
′
2)

The definition is well-formed, because joint sequences S1 and S2 have only � and
¬ elements. In addition, the number of ¬ are the same in the assumption of the
definition. So we can insert �0 to make the two sequences match over the defined
patterns.

For the conditionals if v then e1 else e2, we require that the external transac-
tional behaviours of e1 and e2 are the same, i.e., when removing all the elements
with the tag � from them, the remaining sequences are identical. Let S1 and S2

be such two sequences. Then, they can always be written as Si = �mi
∗n S′

i,
i = 1, 2, ∗ = {+,−,¬}, where S′

1 and S′
2 in turn have the same transactional

behaviours. On this condition for S1 and S2, we define the choice operator as
follows.

Definition 7 (Choice). Let S1 and S2 be two sequences such that if remov-
ing all � elements from them the remaining two sequence are identical. The alt
function is recursively defined as:

alt(�m1 , �m2) = �max(m1,m2)

alt(�m1
∗n S′

1,
�m2

∗n S′
2) = �max(m1,m2) ∗n alt(S′

1, S
′
2)

prashant.anantharaman.gr@dartmouth.edu

A Type System for Counting Logs 165

Table 3. Typing rules.

−1 � onacid : +1
T-ONACID

1 � commit : −1
T-COMMIT

n � e : S
n � spawn(e) : (join(S))ρ T-SPAWN

n � e : S
n � e : join(S)ρ T-PREP

n1 � e1 : S1 n2 � e2 : S2 S = seq(S1S2)

n1 + n2 � let x = e1 in e2 : S
T-SEQ

n1 � e1 : S1 n2 � e2 : Sρ
2 S = jc(S1, S2)

n1 + n2 � let x = e1 in e2 : S
T-JC

n � e1 : Sρ
1 n � e2 : Sρ

2 S = merge(S1, S2)

n � let x = e1 in e2 : Sρ T-MERGE

n � ei : Ti i = 1, 2 kind(T1) = kind(T2) Ti = S
kind(Ti)
i

n � if v then e1 else e2 : alt(S1, S2)
kind(S1)

T-COND

mbody(m) = e n � e : T

n � v.m(v̄) : T
T-CALL

e ∈ {v, v.f, v.f = v′, newC()} n ∈ N

n � e : ∅ T-SKIP

Typing Rules. Now we are ready to introduce our formal typing rules. The
language of types T is defined by the following syntax:

T = S | Sρ

The second kind of types, Sρ, is used for terms inside a spawn expression which
need to be synchronized with their parent thread. The treatment of two cases is
different, so we denote kind(T) the kind of T , which can be empty (normal) or
ρ depending on which case T is. The type environment encodes the transaction
context for the expression being typed. The typing judgement is of the form
n � e : T where n ∈ N is the type environment. When n is positive, it represents
the number of opening transactions that e will close, by commits or joint commits
in e.

The typing rules for our calculus are shown in Table 3. We assume that in
these rules the functions seq, jc,merge, alt are applicable, i.e., their arguments
satisfy the conditions of the functions. The rule T-SPAWN converts S to the joint
sequence and marks the new type by ρ so that we can merge with its parent
in T-MERGE. The rule T-PREP allows us to make a matching type for the e2 in
T-MERGE. In T-CALL we assume that the auxiliary function mbody returns the
body of method m. For sequencing (let), we have three rules: T-SEQ, T-MERGE

and T-JC, where our previous work [10] has only two. Here we simplify the typing
by allowing only a certain combinations of sequencing. This increases the pre-
ciseness of the type system as shown by the example at the end of this section.
The remaining rules are straightforward except for the rule T-JC in which we
need the new function jc. This function is explained below.

In rule T-JC, e2 may have several segments, and let l be the number of join
commit threads. The last + element in S1, say +n , will be matched with the
first ¬ element in S2, say ¬l . But after +n , there can be a � element, say �n′ ,
and the local maximal number of logs for +n �n′ is n + n′ (but we will define
step-by-step so in the following definition of jc we only add 1 to n′ at a time).

prashant.anantharaman.gr@dartmouth.edu

166 A.-H. Truong et al.

Similarly, before ¬l there can be a �l′ , so the maximum of log at this point is
at least l + l′. After removing one + from S1 and one ¬ from S2 we can simplify
the new sequences so that the patterns can appear in the next recursive call of
jc. Thus, the function jc is defined as follows. Note that we do not define the
function for all patterns and this is a reason for the loss of compositionality.

Definition 8 (Joint commit). Function jc is defined recursively as follows:

jc(S′
1
+n �n′ , �l′ ¬l S′

2)=jc(seq(S′
1
+(n − 1) �(n′ + 1)), seq(�(l′ + l) S′

2)) if l, n > 0

jc(�n′ , �l′ ¬l S′
2) = seq(�max(n′, l′) ¬l S′

2)

In the definition of jc, we implicitly assume that the first definition will be
applied if there exists �n with n > 0. As we can see in Sect. 6, the type inference
algorithm naturally satisfies this condition.

As our type reflects the behaviour of a term, so the type of a well-typed pro-
gram contains only a sequence of single � element expressing the upper bound
of logs that can be created when we execute the program and the typing envi-
ronment is 0.

Definition 9 (Well-typed). A term e is well-typed if there exists a type
derivation for e such that 0 � e : �n for some n.

A typing judgment has a property that its environment has just enough opening
transactions for the (join) commits in e as expressed by T . Due to the lack of
space, the proof of the theorem is skipped here. You can find it in a complete
version of this paper.

Theorem 1 (Type judgment property). If n � e : T and n ≥ 0 then
sim(+n , T) = �m and m ≥ n where sim(T1, T2) = seq(jc(S1, S2)) with Si is
Ti without ρ.

5 Correctness

To show that our type system meets our purpose mentioned in the introduction of
this paper, we need to show that a well-typed program does not create more logs
than the amount expressed in its type. Let our well-typed program be e and its
type is �n . We need to show that when executing e according to the semantics in
Sect. 3, the number of logs in the global environment is always smaller than n.

Recall, a state of a program is a pair Γ, P where Γ = p1 : E1; . . . ; pk : Ek and
P =

∐k
1 pi(ei). We say Γ satisfies P , notation Γ |= P , if there exist S1, . . . , Sk

such that |Ei| � ei : Si for all i = 1, . . . , k. For a component i, Ei represents the
logs that have been created or copied in thread pi, and Si represents the number
of logs that will be created when executing ei. Therefore, the behavior of thread
pi in term of logs is expressed by sim(+|Ei| , Si), where the sim function is defined
in Theorem 1. We will show that sim(+|Ei| , S) = �n for some n. We denote this
value n as |Ei, Si|. Then the total number of logs of a program state – ones in

prashant.anantharaman.gr@dartmouth.edu

A Type System for Counting Logs 167

Γ and the potential ones that will be created when the remaining program is
executed – denoted by |Γ, P |, is defined by: |Γ, P | =

∑k
i=1 |Ei, Si|. Since |Γ, P |

represents the maximum number of logs from the current state and |Γ | is the
number of logs in the current state, we have the following properties.

Lemma 1. If Γ |= P then |Γ, P | ≥ |Γ |.
Lemma 2 (Subject reduction 1). If E, e → E′, e′, and |E| � e : S then there
exists S′ such that |E′| � e′ : S′ and |E,S| ≥ |E′, S′|.
Lemma 3 (Subject reduction 2). If Γ |= P and Γ, P ⇒ Γ ′, P ′ then Γ ′ |= P ′

and |Γ, P | ≥ |Γ ′, P ′|.
Theorem 2 (Correctness). Suppose 0 � e : �n and p1 : ε, p1(e) ⇒∗ Γ, P .
Then |Γ | < n.

6 Type Inference

In this section we give an algorithm to compute types for the core of our TFJ
calculus. Our main type inference algorithm is presented in Listing 1.2 in the
functional programming style, which uses the functions defined in the previ-
ous sections to compute types (sequence of tagged numbers). The main function
infer takes an expression term and a head ‘environment’ hd in line 6. The expres-
sion is encoded as a list of branches and leaves. A branch corresponds to a new
thread. A leaf is a tagged number.

We have implemented the algorithm in F Sharp and tested on several
examples2. The code contains automated tests and all test cases are passed,
i.e., actual results is equal to our expected ones.

Listing 1.2. Type inference algorithm.

1 type TagNum = Tag * int

2 type Tree = | Branch of Tree list | Leaf of TagNum

3
4 let rec infer (term: Tree list) (hd: TagNum list) =

5 match term with

6 | [] -> seq hd (* simplifies the result *)

7 | x::xs ->

8 match x with

9 | Leaf tagnum -> (* expand the head part*)

10 let new_head = seq (List.append hd [tagnum]) in

11 infer xs new_head

12 | Branch br -> (*a new thread *)

13 let child = join (infer br []) in (*infer child *)

14 let parent = join (infer xs []) in (*infer parent *)

15 let tl = seq (merge child parent) in (*merge them*)

16 jc hd tl (*join commit with the head*)

2 https://github.com/truonganhhoang/tfj-infer.

prashant.anantharaman.gr@dartmouth.edu

https://github.com/truonganhhoang/tfj-infer

168 A.-H. Truong et al.

7 Conclusion

We have presented a new type system that have some advantages over our previ-
ous type systems [7,10] for a language that mixes nested transactional memory
and multi-threading. Our type system is much simpler and gives more precise
estimation for the maximum number of logs (in the worst case) that can coexist
during the execution of a program being typed. Though the new type system
is a bit less compositional than the previous ones, we believe that the inference
algorithm developed based on this work is more efficient. Like the type system in
[10], the one presented in this paper does not restrict opening new transactions
after a joint commit as the one presented in [7]. Our next step is to generalize
our type system for the larger class of TFJ with more language features.

References

1. Bezem, M., Hovland, D., Truong, H.: A type system for counting instances of
software components. Theor. Comput. Sci. 458, 29–48 (2012)

2. Braberman, V., Garbervetsky, D., Yovine, S.: A static analysis for synthesizing
parametric specifications of dynamic memory consumption. J. Object Technol.
5(5), 31–58 (2006)

3. Chin, W.-N., Nguyen, H.H., Qin, S.C., Rinard, M.: Memory usage verification for
OO programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
70–86. Springer, Heidelberg (2005)

4. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proceedings of POPL 2003. ACM, January 2003

5. Hofmann, M.O., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

6. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus.
Sci. Comput. Program. 57(2), 164–186 (2005)

7. Mai Thuong Tran, T., Steffen, M., Truong, H.: Compositional static analysis for
implicit join synchronization in a transactional setting. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 212–228. Springer,
Heidelberg (2013)

8. Pham, T.-H., Truong, A.-H., Truong, N.-T., Chin, W.-N.: A fast algorithm to
compute heap memory bounds of Java Card applets. In: Software Engineering and
Formal Methods (2008)

9. Shavit, N., Touitou, D.: Software transactional memory. In: Symposium on Prin-
ciples of Distributed Computing, pp. 204–213 (1995)

10. Vu, X.-T., Mai Thuong Tran, T., Truong, A.-H., Steffen, M.: A type system for find-
ing upper resource bounds of multi-threaded programs with nested transactions.
In: Symposium on Information and Communication Technology SoICT 2012, pp.
21–30 (2012)

prashant.anantharaman.gr@dartmouth.edu

Proactive Resource Provisioning Model
for Cloud Federation

Geethapriya Ramakrishnan1(B), Prashant Anantharaman2,
and Saswati Mukherjee1

1 Department of Information Science and Technology, Anna University,
Chennai, India

geethapriya.krish@gmail.com, msaswati@auist.net
2 Department of Computer Science, Dartmouth College, Hanover, NH, USA

prashant.anantharaman.gr@dartmouth.edu

Abstract. Cloud federation addresses the resource scalability issue by
enabling infrastructure sharing among multiple clouds. We propose a
proactive resource provisioning model for federation based on sliding win-
dow prediction technique. We compare the results of the proposed predic-
tion mechanism with the commonly used time series prediction algorithm
ARIMA. We developed a simulation environment for cloud federation
to investigate the impact of workload prediction based resource provi-
sioning in cloud federation. Finally we compare it with that of resource
provisioning without prediction in a federated environment, evaluate the
profit and resource utilization associated with both the cases.

Keywords: Cloud federation · Resource provisioning · Workload pre-
diction · Insource · Outsource · Sliding window · ARIMA

1 Introduction

A Cloud is imagined as an inexhaustible pool of computing resources; in reality
they are limited. To meet peak demands beyond the resource limits, cloud fed-
eration has been proposed as a solution in which the resources are dynamically
provisioned. Multiple clouds share their infrastructure and co-ordinate among
themselves through SLA to meet the demands. If there is a resource limitation
in a cloud, resources are borrowed from other clouds (Outsource) and if there
are more unused resources in a cloud, those resources are rented to other clouds
there by increasing the resource utilization and maximizing profit (Insource) [1].
In this paper, we propose a proactive resource provisioning mechanism in cloud
federation by implementing a sliding window prediction algorithm.

2 Literature Survey

The authors of [1,2] proposed the decision equations for federation. In [3,4], an
economic model for federation has been proposed based on game theory. In [5], the
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 169–174, 2016.
DOI: 10.1007/978-3-319-28034-9 22

prashant.anantharaman.gr@dartmouth.edu

170 G. Ramakrishnan et al.

authors propose a threshold based load balancing algorithm for federation that
mainly addresses SLA violation. Authors of [6] propose a pre-emption based con-
tention free federation environment. All the above mentioned resource provision-
ing mechanisms are reactive i.e., the federation decisions are made only when the
resource limitation occurs. In the next section we propose proactive resource pro-
visioning mechanism and discuss the impact of it in terms of profit and resource
utilization.

3 Proactive Resource Provisioning in Cloud Federation

An intelligent resource provisioning mechanism is needed such that it adapts
to the incoming workload. In our proposed technique, federation decisions are
made in advance even before the resource shortage occurs and also achieves
efficient resource utilization. Based on the predicted resource requirements and
the current resource utilization, insourcing and outsourcing decisions are made
in advance. Our proposed mechanism has three components namely Resource
Allocator, Load Balancer and Workload Predictor. We discuss each of them in
detail in the forthcoming sub sections.

3.1 Resource Allocator

The VM requests to a IaaS cloud are from two sources in a federated environ-
ment: direct customers and insource request from other CSPs. Resource Alloca-
tor component gets the incoming VM requests and allocates resources for the
VM on a best effort basis. Resources allocation is done based on the insource
and outsource flags set/reset by the Load balancer and Workload Predictor com-
ponents. The flowchart of how the VM requests are served is shown in Fig. 1.

3.2 Load Balancer

We define two threshold values on load in a cloud namely, T1 and T2. This com-
ponent computes the resource utilization of the cloud periodically and compares
it with the threshold values. Three decision rules of Load Balancer are as follows:

1. If the resource utilization is less than T1, the insource flag is enabled which
denotes that insource requests are served in order to improve the utilization.

2. If the resource utilization is between T1 and T2, only direct requests are served
and no new insource requests are served to reserve more resources for future
direct requests that yields more profit.

3. If the resource utilization crosses T2, the insource requests that are being
served are pre-empted and the outsource flag is set to denote that the new
requests from direct customers have to be outsourced.

These scenarios are with respect to scaling up of resources by a cloud. Similarly,
the flags are reset when the load falls below the threshold values during which
scale down occurs. Figure 2 is the flowchart of the load balancing mechanism.

prashant.anantharaman.gr@dartmouth.edu

A Proactive Resource Provisioning Model for Cloud Federation 171

Fig. 1. Flowchart of resource allocation mechanism

Fig. 2. Flowchart of load balancing mechanism

3.3 Workload Predictor

A time series based workload prediction algorithm runs at fixed time interval like
load balancer and predicts the resource requirement of next interval based on
which the resource utilization of next interval is estimated. Now a load balancing
is performed by this component by comparing the estimated resource utilization
with the threshold range based on which the insource and outsource flags are
set/unset appropriately. The flowchart of the workload prediction mechanism
is shown in Fig. 3. Though our prediction mechanism is intelligent enough to
predict peak workloads and rejects new insource requests, few insource requests
would have bypassed the prediction. Such insource requests are pre-empted when
the resource utilization crosses T2.

We propose a sliding window prediction algorithm that looks for a similar trend
of events in the training set by matching the current window with the training win-
dow that keeps sliding until the entire training set is covered. The best matching

prashant.anantharaman.gr@dartmouth.edu

172 G. Ramakrishnan et al.

Fig. 3. Flowchart of workload prediction mechanism

training window is the one that has minimum Euclidean distance with the cur-
rent window. The resource requirement in the training set that is next to the best
matching training window is the predicted resource requirement. The Sliding win-
dow technique is useful in this scenario as it captures the variations in training set
that matches the current variation and very well predicts the peak workloads.

4 Experiment and Analysis

In this section, first we compare the prediction accuracy of sliding window algo-
rithm with a popular time series prediction algorithm Auto Regressive Integrated
Moving Average (ARIMA) when used for workload prediction. Then we perform
evaluation of proactive resource provisioning in cloud federation.

4.1 Evaluation of Prediction Algorithms

We use the workload log obtained from The Los Alamos National Lab
(LANL) which consists of incoming workload information that includes its
resource requirements(CPU,memory) also. We predict the CPU and memory
requirements for the next time interval using this history. Table 1 shows the
MAPE(Mean Absolute Percentage Error) of the prediction algorithms. MAPE
is given by the formula

(
1
n

n∑

i=1

|ai − pi|/ai
)

∗ 100 (1)

prashant.anantharaman.gr@dartmouth.edu

A Proactive Resource Provisioning Model for Cloud Federation 173

Table 1. Comparison of MAPE of ARIMA and sliding window algorithm

MAPE (%)
Memory prediction CPU prediction

ARIMA 51.2 59.80
SW = 3 71.9 73.1
SW = 5 77.4 82.3
SW = 7 80.1 85.6

Table 2. Performance comparison of federation without prediction, with prediction
using ARIMA and with prediction using sliding window

Only Insourcing
No Outsourcing

Insourcing and
Outsourcing

Resource
Util (%)

Profit ($)
Resource
Util (%)

Profit ($)

Without Prediction 53.2 8541.46 55.6 13146
With Prediction(ARIMA) 54.5 8796.4 30.48 12840

With Prediction(Sliding window) 65.9 13736.8 67.7 15601.8

where ai is the actual value, pi is the predicted value and n is the number of
observations. From Table 1, we learn that Sliding window algorithm is better in
terms of accuracy when compared to ARIMA and also the accuracy of sliding
window increases with increase in window size.

4.2 Evaluation of Proactive Cloud Federation Mechanism

We implemented a homogeneous cloud federation simulation environment. In
reference to the utilization range defined by VMware in [7], we set the threshold
values on utilization as T1 = 45 % and T2 = 81 % for our experimental purpose.
Ideally, during outsourcing the best cloud has to be chosen based on various
parameters like bandwidth, resource utilization and cost. But we assume that
there is only one cloud called remote cloud to which a outsource requests are
sent. We assume that price of a CPU per hour in home cloud is $0.7 and that in
remote cloud during federation is $0.5, price of a memory unit per hour in home
cloud is $0.5 and that in remote cloud is $0.4, operation cost of a VM in both
the clouds is $0.1 per hour and outsourcing cost per VM is $0.2 per hour. From
our experiment using the above mentioned data set, we identified that without
federation the resource utilization of the home cloud was 24.6 % and the profit
gained was $4644. Table 2 shows that the resource utilization and profit of the
home cloud during federation is better than that without federation. But the
resource utilization and profit during federation with prediction using ARIMA
is very closer to that without prediction when only insourcing is done.In the
case when both insourcing and outsourcing are done, performance of federation
using ARIMA dropped whereas federation with prediction using sliding window
generated better performance in terms of utilization and profit in all cases.

prashant.anantharaman.gr@dartmouth.edu

174 G. Ramakrishnan et al.

5 Conclusion

In this paper, we have presented a proactive resource provisioning model for
cloud federation that uses sliding window for workload prediction and we com-
pared its accuracy with ARIMA. We have developed a simulation environment
for federation for our experimental purpose and evaluated the results of pro-
posed mechanism. Though its not experimentally shown, the proactive resource
provisioning during federation decreases the SLA violations and better satisfies
the QoS. We plan to prove this experimentally in our future work.

Acknowledgement. The research for this paper was financially supported by DST
PURSE Phase II.

References

1. Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing
providers’ profit. In: 2010 IEEE 3rd International Conference on Cloud Comput-
ing (CLOUD), pp. 123–130. IEEE (2010)

2. Toosi, A.N., Calheiros, R.N., Thulasiram, R.K., Buyya, R.: Resource provisioning
policies to increase iaas provider’s profit in a federated cloud environment. In: 2011
IEEE 13th International Conference on High Performance Computing and Commu-
nications (HPCC), pp. 279–287. IEEE (2011)

3. Samaan, N.: A novel economic sharing model in a federation of selfish cloud
providers. IEEE Trans. Parallel Distrib. Syst. 25(1), 12–21 (2014)

4. Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the sky: formation
game and mechanism. IEEE Trans. Cloud Comput. 3(1), 14–27 (2015)

5. Patel, K.S., Sarje, A.: VM provisioning method to improve the profit and SLA
violation of cloud service providers. In: 2012 IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM), pp. 1–5. IEEE (2012)

6. Salehi, M.A., Toosi, A.N., Buyya, R.: Contention management in federated virtual-
ized distributed systems: implementation and evaluation. Softw. Pract. Experience
44(3), 353–368 (2014)

7. Gulati, A., Holler, A., Ji, M., Shanmuganathan, G., Waldspurger, C., Zhu, X.:
Vmware distributed resource management: design, implementation, and lessons
learned. VMware Tech. J. 1(1), 45–64 (2012)

prashant.anantharaman.gr@dartmouth.edu

A Multiclass SVM Classification Approach
for Intrusion Detection

Santosh Kumar Sahu(B) and Sanjay Kumar Jena

National Institute of Technology, Rourkela, Odisha, India
santoshsahu@hotmail.co.in, skjena@nitrkl.ac.in

Abstract. As the number of threats to the computer network and
network-based applications is increasing, there is a need for a robust
intrusion detection system that can ensure security against threats. To
detect and defend against a specific attack, the pattern of the attack
should be known a priori. Classification of attacks is a useful way to
identify the unique patterns of different type of attack. As a result,
KDDCup99, NSLKDD and GureKDD datasets are used in this experi-
ment to improve the learning process and study different attack patterns
thoroughly. This paper proposed a multi-class Support Vector Machine
classifier(MSVM), using one versus all method, to identify one attack
uniquely, which in turn helps to defend against the known as well as
unknown attacks. Experimentally, the proposed scheme provides better
detection accuracy, fewer false positives, and lesser training and gener-
alization error in comparison to the existing approach.

Keywords: MSVM · Threats · KDD corrected · NSL KDD ·Gure KDD

1 Introduction

The highly integrated electronic world is an effect of technological development
over decades. The number of malicious activities and attacks are also grow-
ing besides the advances in security against threats. To mitigate the situations,
various attempts are made to control the attack activities. There is a need to
improve and innovate different techniques for the detection of intrusion against
the enormous amount of malicious attempts on networks [1]. To detect and coun-
termeasures such attacks, multi-class problem should be adapted. Most of the
learning methods are biased in multiclass problems. As a result proper combina-
tion approaches should be used to improve the detection rate, overcome the bias
and over fitting situation. In this work, Support Vector Machine (SVM) learning
approach is used as a base learner to solve the multi-class problem.

1.1 Support Vector Machine

The classification is used to achieve high accuracy for classifying the maximum
number of instances with the small number of training samples. It gives better
c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 175–181, 2016.
DOI: 10.1007/978-3-319-28034-9 23

prashant.anantharaman.gr@dartmouth.edu

176 S.K. Sahu and S.K. Jena

result for two class classification problem [4]. It maps input vectors to a high
dimensional feature space. Both linear and non-linear data is separated by a
hyperplane in two classes. The hyperplane is found with the help of support
vector (training tuples) and margin (defined by support vectors) [5]. SVMs are
the successful and resilient classification algorithms [4]. The SVM supports only
binary classification and deals with maximizing the margin which is the minimum
distance from nearest example to the separating hyperplane. The concept of SVM
can be extended to multiclass classification [6].

1.2 Multiclass Support Vector Machine

The multiclass problem needs to be decomposed into several binary class prob-
lems. Each of the binary classifiers is applied to new data point and the frequency
of the number of times the point is assigned to the same label is counted and
labeled with the highest count. The popular two methods for decomposition of
multi-class problem discussed as follows: [7].

One-verses-all. One-verses-all is also called as winner takes all strategy. This is
the simplest approach to reduce the problem of classification from k classes into
k binary problems. Each problem is different from other k − 1 problems. This
approach requires k binary classes in which we train kth classifier with positive
example and belonging to class k and negative examples belonging to other k−1
classes. An unknown example is tested and the classifier for which maximum
output is produced is considered to be the winner class. That class label is
assigned to that example. Although this approach is simple, its performance can
be compared with more complicated approaches [8].

One-versus-one. For every pair of different classes, one binary classifier is
constructed. In this way, the multi-class problem is broken into a series of a
set of binary class problems; so that we can apply SVM model for each pair
of classes. Total k(k − 1)/2 classifiers are needed to classify the unknown data.
The binary classifier is trained taking one class as positive and other class as
negative. For a new data point x if that classifier classifies x in first class, then
a vote is added to that class. If the classifier classifies x in second class the vote
is added to the second class. This process is repeated for each of the k(k − 1)/2
classifiers. Finally, label of the class with maximum number of votes is assigned
to the new data point x. In this way the class to which the unknown data point
belongs is predicted [8,9].

1.3 Intrusion Dataset

The intrusion dataset takes a vital role in model assessment and learning process.
In this experiment the benchmarked intrusion datasets are used. The public
datasets namely KDDCup99, NSLKDD, and GureKDD are used in learning
and evaluation process. The details about the datasets are discussed in [10].

prashant.anantharaman.gr@dartmouth.edu

A Multiclass SVM Classification Approach for Intrusion Detection 177

1.4 Motivation and Objective

As the number of attacks are growing day by day, it becomes utmost essential
to classify the specific attack type with maximum accuracy that motivated to
implement the MSVM IDS. The objective of this work is to detect the exact
type of attacking effort to the network that helps to analyze, countermeasure
and implement security policies.

The rest of the paper is organized as follows: The existing work on SVM
and multiclass SVM discussed in Sect. 2. The result and discussion is presented
in Sect. 3. The comparison of the proposed approach with existing approaches
elaborated in Sect. 4, and finally, Sect. 5 conclude the work.

2 Related Work

Mathur et al. [3] has extended the SVM approach to multiclass SVM. He
has undertaken a multiclass classification based on a single optimization. Chen
et al. [12] uses hierarchical SVM for clustering the classes into binary tree. The
clusters are formed by arranging the classes into undirected graph. Each node of
the tree is a binary SVM classifier . Hsu et al. [14] has proposed two methods one
by considering all data at once and second is a decomposition implementation.

According to latest research, there are a lot of attempts to improve IDS using
the data mining and machine learning techniques. In this paper, a multi-class
SVM approach is proposed to detect the specific attack types with low false
alarm rate. The accuracy is calculated for each of the five classes i.e., Normal,
DOS, U2R, R2L, and Probe attack.

3 Result and Discussion

In this paper, one against all approach of MSVM is implemented on Matlab
R2015a. To improve the detection accuracy, cross validation and re-sampling

Table 1. The details of datasets

Dataset No. of No. of Number of No. of Accuracy

instances instances instances Class

for training for testing correctly classified

KDD Corrected 77291 311029 284421 38 91.445 %

NSL-KDD 47736 125973 118447 23 94.025 %

Gure-KDD 160904 178810 177283 28 99.146 %

prashant.anantharaman.gr@dartmouth.edu

178 S.K. Sahu and S.K. Jena

Table 2. The confusion matrix on KDD corrected dataset

790 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

16 98 0 0 0 0 0 0 0 0 0 984 0 0 0 0 0 0 0 0 0

0 0 12 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0

2 0 0 3959 1 0 0 1 0 0 0 401 0 0 3 0 0 0 0 0 0

0 0 1 0 150 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 296 0 0 0 0 0 5 0 0 0 2 0 3 0 0 0

0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 4421 0 0 0 579 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 6 0 0 0 1039 0 0 4 0 0 3 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 7 57989 0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0 0 0 0

1 9 1 46 2 1 0 15 4 5 0 48539 9 65 2 0 82 2 11707 103 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 13 73 0 0 0 0 1 0 0 0

0 0 0 0 23 0 0 0 0 0 0 1 0 330 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0 0 0 0 0 756 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 17 0 0 0 104 614 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 1624 0 0 0 0

0 0 2 2 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 164090 0 0 0

0 0 0 0 0 0 0 0 0 0 0 106 0 0 0 0 0 0 7635 0 0

0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 1 0 0 2395 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 1505 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 5 0 0 3 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 2 0

methods are applied on U2R and R2L distributions. The three intrusion datasets
namely KDD corrected , NSL-KDD and Gure-KDD used for training and testing
purpose. The details about the dataset and detection accuracy is given in the
Table 1. The confusion matrices for KDD corrected, Gure-KDD and NSL-KDD
dataset are given in Table 2, Fig. 1b and Table 3 respectively.

prashant.anantharaman.gr@dartmouth.edu

A Multiclass SVM Classification Approach for Intrusion Detection 179

Fig. 1. ROC curve for different datasets (a, c and d) and confusion matrix (b) for
GKDD dataset

prashant.anantharaman.gr@dartmouth.edu

180 S.K. Sahu and S.K. Jena

Table 3. The confusion matrix on NSL-KDD dataset

65781 4 116 80 2 0 0 30 151 52 423 1 345 7 0 21 37 63 16 11 203

4 41200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0

380 0 492 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0

111 0 0 3449 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 5 0 0 2852 0 0 0 0 0 0 0 0 0 0 0 27 2 4 0 0

7 0 0 0 0 884 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

271 0 0 13 0 0 1209 0 0 0 0 0 0 0 0 0 0 0 0 0 0

287 0 0 0 2 0 0 0 0 3325 0 0 1 0 0 0 13 0 5 0 0

66 0 0 0 0 0 0 0 2580 0 0 0 0 0 0 0 0 0 0 0 0

97 0 0 0 0 0 0 0 0 0 0 0 0 0 104 0 0 0 0 0 0

749 0 2 0 0 0 0 200 0 0 0 0 0 0 0 5 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0

26 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0

8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

4 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0

4 Comparison

The existing approach by [1] failed to detect the R2L and U2R attack patterns.
As a result, the accuracy of that model is 91.67 % and only KDDCup99 dataset
is used. In the proposed MSVM approach, three datasets are used and pre-
processed properly before the model formation. The detection accuracy of the
proposed scheme is 99.146 % on GureKDD, 94.025 % on NSLKDD and 91.445 %
on KDDCorrected Dataset.

5 Conclusion

In this paper, an MSVM classifier is used to detect and identify the attacks by
type. Evaluation has been done over the three benchmark intrusion datasets.
Cross-validation and re-sampling methods are applied to improve the learning
process to the datasets. The model can determine a particular known type of
attack when the unknown instances need to be classified. This scheme provides
a better detection accuracy and reduces the complexity of the model. Further,
it can detect the least data distributions i.e. U2R and R2L attacks efficiently.

prashant.anantharaman.gr@dartmouth.edu

A Multiclass SVM Classification Approach for Intrusion Detection 181

References

1. Ambwani, T.: Multi class support vector machine implementation to intrusion
detection. In: Proceedings of the International Joint Conference on Neural Net-
works, vol. 3. IEEE (2003)

2. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks
and support vector machines. In: Proceedings of the 2002 International Joint Con-
ference on Neural Networks, IJCNN 2002, vol. 2. IEEE (2002)

3. Mathur, A., Foody, G.M.: Multiclass and binary SVM classification: implications
for training and classification users. IEEE Geosci. Remote Sens. Lett. 5(2), 241–245
(2008)

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

5. Han, J., Kamber, M., Pei, J.: Data Mining, Southeast Asia Edition: Concepts and
Techniques. Morgan kaufmann, Burlington (2006)

6. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: theory and
application to the classification of microarray data and satellite radiance data. J.
Am. Stat. Assoc. 99(465), 67–81 (2004)

7. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying
approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2001)

8. Aly, M.: Survey on multiclass classification methods. Neural Netw. 1–9 (2005)
9. Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empir-

ical study. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS,
vol. 3541, pp. 278–285. Springer, Heidelberg (2005)

10. Sahu, S.K., Sarangi, S., Jena, S.K.: A detail analysis on intrusion detection
datasets. In: 2014 IEEE International Advance Computing Conference (IACC).
IEEE (2014)

11. Tavallaee, M., et al.: A detailed analysis of the KDD CUP 99 data set. In: Proceed-
ings of the Second IEEE Symposium on Computational Intelligence for Security
and Defence Applications (2009)

12. Chen, Y., Crawford, M.M., Ghosh, J.: Integrating support vector machines in a
hierarchical output space decomposition framework. In: 2004 IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 2004, Proceedings, vol. 2.
IEEE (2004)

13. Lee, H., Song, J., Park, D.: Intrusion detection system based on multi-class SVM.
In: Śl ↪ezak, D., Yao, J.T., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005.
LNCS (LNAI), vol. 3642, pp. 511–519. Springer, Heidelberg (2005)

14. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

prashant.anantharaman.gr@dartmouth.edu

Dynamic Data Replication Across Geo-Distributed
Cloud Data Centres

D.S. Jayalakshmi1, T.P. Rashmi Ranjana1(✉), and Srinivasan Ramaswamy2

1 M. S. Ramaiah Institute of Technology, Bengaluru, India
jayalakshmids@msrit.edu, rashmiranjana23@gmail.com

2 SRM University, Kattankulathur, Kancheepuram, India
rsv38@yahoo.co.in

Abstract. Cloud computing is being used for data-intensive computing for
enterprise and scientific applications that process large data sets originating from
globally distributed data centers. In this work, we propose a system model for
multiple data centers cooperating to serve a client’s request for data and to identify
data centers which can provide the fastest response time to a client. Further,
dynamic data replication strategy across geo-distributed data centers based on
popularity is detailed. Simulation results are presented and the performance eval‐
uation shows that our method consistently maintains the replica count to an
optimal value.

Keywords: Data center selection · Dynamic data replication · Geo-distributed
data centers · Data intensive applications

1 Introduction

Data-intensive mobile, enterprise and scientific applications are being run across geo-
distributed data centers [1]. To perform analytics over the entire data, the geo-distributed
data has to be transferred to a single data center which calls for costly data transfers
across wide area networks or, the data sets have to be processed in the local data centers
and the results aggregated [2]. In this paper, we consider data intensive applications
running across geo-distributed data centers. Selecting the best data center based on the
proximity to clients can significantly reduce the client response time and replicating data
files in data centers that are close to the clients can benefit in reducing latency. Many
variants of Hadoop for handling data across multiple data centers use static replication
and do not consider replication across data centers. We propose a system model to reduce
access latency by providing a method to determine the closest data center to the client
[3] and to reduce data storage and transmission costs by dynamically creating or
removing replicas of large data files based on their popularity [4]. The rest of the paper
is organized as follows. In Sect. 2, we give the detailed information about the proposed
system model and cloud data service architecture, while conclusions and final remarks
are presented in Sect. 3.

D.S. Jayalakshmi—Research scholar, SRM University.

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 182–187, 2016.
DOI: 10.1007/978-3-319-28034-9_24

prashant.anantharaman.gr@dartmouth.edu

2 System Model

System Architecture. The cloud system architecture consists of a single Master Data‐
Centre (MDC) and two Ordinary DataCentres (ODCs) as shown in Fig. 1. Each data‐
centre comprises a Local Scheduling Broker (LSB), a Local Replica Manager (LRM),
a Local Replica Catalog (LRC), and storage element. LSB is a scheduler which is
responsible for selecting a datacenter on which the task must be executed. LRC is a
catalog which has complete information about the blocks of files and the number of
replicas of files which are stored in the datacenter. LRC is used by LRM for checking
the requested file’s availability in ODC. The MDC consists of Master Replica Manager
(MRM) and Master Replica Catalog (MRC) which is held together as a single entity
called Replica Broker (RB). Each ODC is assigned with unique IP address and unique
datacenter id (ODCid). IP addresses are used for calculation of geographical distance
between the client and datacenter.

During initialization of the system, files are stripped into blocks of equal size and
stored with replica count as one. All files stored in this system are maintained as file set
where each element file is defined as File Catalog Content/Local Replica Catalog. Each
client is identified by a unique IP address assigned to it at the time of its creation. It
creates tasks and submits them to the nearest datacenter in Poisson distribution using an
External Scheduler.

Cloud Data Service. In the first phase of data service, a decision regarding task sched‐
uling to a best suited datacenter is done by external scheduler and LSB; accordingly the
task is routed to that datacenter for execution. The best datacenter is selected based on
distance and file access cost between the client and datacenter.

Fig. 1. Cloud system architecture

Datacenter Selection. The client submits tasks to the geographically closest datacenter
which has all the resources to serve the request. File access cost from a datacentre DC
j having the file to client ‘i’ is calculated. The formula of data transfer time DT (Ci,
DCj) of a file ‘f’ is given by (1)

Dynamic Data Replication Across Geo-Distributed Cloud Data Centres 183

prashant.anantharaman.gr@dartmouth.edu

(1)

where f - file requested, DCj - data center which is considered for selection, Rt(DCj) -
time span for requesting for ‘f’, Ci - client who has submitted the task, j can be {0,1,2}
- any one of the data center in cloud system. If a single data center does not have complete
file required then the aggregated cost DT(F), i.e. the total data transfer time, has to be
calculated using (2).

(2)

where DCj is the data center at which task is submitted, DCk is the data center having
part of file ‘f’, k is the set of candidate data centers (0 < k<n) having the blocks requested
file, n is total number of data centers in the system. The total data file access cost in a
data grid before replication is the total transmission time spent to get all needed data
files for each site. The data file access cost Cij(F) between the client Ci and DCj is
obtained by (3) where Costbw is cost associated with used network bandwidth.

(3)

Dynamic Data Replication Strategy. Here a decision regarding creation of a replica
for a file requested say F(RF) and deletion of replica to maintain optimal number of
replicas in the system is made. The average amount of data accessed in some time
interval is calculated. The MRM maintains a summarized access record for every file
‘F’ in the system for a certain time interval ‘t’. The formula for average amount of data
accessed in time ‘t’ is given by (4)

(4)

where nt(F) – the number of times file ‘F’ is accessed during ‘t’, Nt(F) - number of
replicas of F(RF) in interval ‘t’, Tf - total number of unique files in the system during ‘t’.
A large file with more access time is suitable for replication when compared to a small
file that is accessed many times. Thus amount of data accessed for a file ‘F’ in interval
‘t’ is given by (5).

(5)
The decision on replica creation is made by the condition given in (6). If it satisfies,

Stage 2 of this phase is entered; else exit.

(6)

Network topology that will be created from BRITE topology file is used to determine
the hop count value. In this stage, the link Hi with minimum hop from a datacenter to

184 D.S. Jayalakshmi et al.

prashant.anantharaman.gr@dartmouth.edu

another datacenter ‘I’ belonging to EF, where EF is the set of datacenters containing
replica of file RF is determined including maximum available bandwidth Bi, From the
list of datacenters obtained, a datacenter ‘k’ is selected using (7).

(7)

Least Recently Accessed (LRA) replacement strategy in combination with the popu‐
larity of that file is used as a criterion for deleting the replica which results in balanced
number of replicas in the system.

3 Simulation and Results

The test environment is setup on CloudSim v3.0.3. A simulation is run with 3 datacentres
MDC_0, ODC_1, and ODC_2. Each datacentre consists of 3 VMs and 3 Hosts with
files that are stripped into blocks of equal size and loaded in to the datacenters randomly
with initial replica count equal to 1. The storage capacity of each datacenter, IP address,
Number of Requests, Poisson Mean, Replication Interval, Number of Files, and Size of
each File can be changed for each simulation by the user and are given individually as
shown in Table 1.

Table 1. Configuration parameters for simulation

Base Case

Cases
Considered

Memory Storage of DC (in
GB)

No.
of
Files

Size of File (in GB) No. of
Requests

Size of
Blocks
(in
MB)

ODC_1 ODC_2 MDC_0 F1 F2 F3 F4

1024 1024 512 2 400 750 - - 25 204.8

Case 1: No.
of Requests

1024 1024 512 2 400 750 - - 75 204.8

Case 2:
Memory
Storage of
DC (in GB)

1524 1524 1012 2 400 750 - - 25 204.8

Case 3: No.
of Files

1024 1024 512 4 400 200 750 400 25 204.8

3.1 Result Analysis

Simulation is performed extensively by varying parameters and there results are
analyzed to give the inference and conclusions. The base case 1 simulation results are
used for comparison with all the cases given in the following sections.

Dynamic Data Replication Across Geo-Distributed Cloud Data Centres 185

prashant.anantharaman.gr@dartmouth.edu

Number of Requests. It is inferred that as the number of requests increase the number
of replicas also increase. It is observed that as the replicas increase the data transfer cost
for that file decrease, decreasing the execution time as shown in the Fig. 2.

Memory Storage of Datacentres. It is inferred that as the number of replicas increases
as there is empty storage space for the new replicas to be accommodated. Although there

Fig. 2. Data transfer cost of a file F2 for all cases.

Fig. 3. Replica creation and deletion based on the access frequency for file F2.

186 D.S. Jayalakshmi et al.

prashant.anantharaman.gr@dartmouth.edu

is deletion for least recently accessed files, the number of replicas will be increased in
line with access count as shown in Fig. 3. It is observed that as the replicas increase the
data transfer cost or that file decrease which results in less execution time.

Number of Files in Datacentres. It is inferred that as the number of files increases;
due to lack of storage space, the number of replicas will decrease.

4 Conclusions

The dynamic replication system proposed in this work aims at reducing the data transfer
cost for a requested file as the closest datacenter will be selected for submitting the
request. The performance evaluation shows that this reduces the execution time and data
transfer cost in the course of time by increasing the number of replicas, the number of
replicas will be increased only for the popular files and, the files with least access count
and least recently accessed time will be deleted when a request is served. This dynam‐
ically controls the proliferation of replicas over a period of time and keeps the replica
count constrained to an optimal value thereby bringing down storage costs.

References

1. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxonomy
andsurvey. J. Softw. Pract. Exp. 44, 369–390 (2014). doi:10.1002/spe.2168. Wiley

2. Agrawal, D., El Abbadi, A., Mahmoud, H.A., Nawab, F., Salem, K.: Managing geo-replicated
data in multi-datacenters. In: Madaan, A., Kikuchi, S., Bhalla, S. (eds.) DNIS 2013. LNCS,
vol. 7813, pp. 23–43. Springer, Heidelberg (2013)

3. Kapgate, D.: Efficient service broker algorithm for datacentre selection in cloud computing.
IJCSMC 3(1), 355–365 (2014). ISSN 2320–088X

4. Bsoul, M., Al-Khasawneh, A., Kilani, Y., Obeidat, I.: A threshold-based dynamic data
replication strategy. J Supercomput 60, 301–310 (2012). doi:10.1007/s11227-010-0466-3

Dynamic Data Replication Across Geo-Distributed Cloud Data Centres 187

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1007/s11227-010-0466-3

Trust Based Target Coverage Protocol
for Wireless Sensor Networks

Using Fuzzy Logic

Pooja Chaturvedi(&) and A.K. Daniel

M. M. M. University of Technology, Gorakhpur, India
chaturvedi.pooja03@gmail.com, danielak@rediffmail.com,

ajai.k.daniel@gmail.com

Abstract. Wireless sensor network constitute a class of real time embedded
systems having limited resources. Target coverage problem is concerned with
the continuous monitoring of a set of targets such that the network lifetime is
maximized with the consideration of resource constraints. In this paper we
propose a node scheduling protocol for target coverage problem on the basis of
node contribution, coverage probability and trust values, where the set covers
are computed dynamically using time stamping. The time stamping is a factor of
threshold of the coverage level. We have evaluated the performance of the
proposed protocol by varying the number of nodes and targets. The results show
that the proposed scheme improves the network lifetime in terms of energy
consumption and the reliability of the data communicated in comparison to the
naïve approach in which all the nodes are activated at once. The results show
that the network lifetime is proportional to the energy savings under a constant
environment.

1 Introduction

Target coverage algorithms aim to have each critical region or area within the range of
at least one sensor node. The scheduling of the nodes in a number of set covers can
ensure the monitoring of the targets while conserving the energy. Consider the network
as shown in Fig. 1. The set of sensor nodes as S ¼ fs1; s2; s3g and set of targets as
T ¼ ft1; t2; t3; t4g in which the nodes can monitor the targets as: s1 ¼ ft1; t2g;
s2 ¼ ft2; t3g; s3 ¼ ft3; t4g.

Suppose each node can monitor the targets for 0.1 time unit, then if all the nodes are
activated at once then the network lifetime will be 0.1. But if we schedule the nodes into
various sets as: C1 ¼ fs1; s2; s3g;C2 ¼ fs1; s3g and suppose the monitoring time of each
set covers is as: 0.3 and 0.2 then the network lifetime can be extended to 0.5 time units.
Various approaches have been proposed for target coverage problem such as virtual
force based approach, deployment based approach and geometrical constructs based
approach. The most efficient way to improve the network lifetime while continuously
monitoring a set of targets is to schedule the nodes in various set covers [1, 4].
The closest work related to our work is in [2], in which the authors have considered only
the communication trust and one hop communication between the node and the base

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 188–192, 2016.
DOI: 10.1007/978-3-319-28034-9_25

prashant.anantharaman.gr@dartmouth.edu

station. In the proposed approach we have considered the various trust metrics and also
the multi hop communication between the nodes to ensure the desired coverage level
and connectivity [5].

2 Proposed Node Scheduling Protocol

For a sensor network which consists of n sensor nodes S ¼ fs1; s2. . .sng and a set of
m targets T ¼ ft1; t2. . .tmg, the coverage problem is formulated as an integer linear

programming, in which the objective is to minimize the objective function
Pn

j¼1
xj

subject to
xj �

Pn

j¼1
Pobs
ij [0 8Ti 2 T

PcvrðiÞ�RTL 8Ti 2 T
xj 2 ð0; 1Þ 8Sj 2 S

8
>><

>>:

9
>>=

>>;

where RTL is the required trust level of each target.
The objective of the function is to minimize the number of sensor nodes in active

state. xj is a Boolean variable which is set as 1 if the sensor node Sj is able to observe
the target Ti and 0 otherwise. Pobs

ij represents the probability that the target is monitored
by a sensor node and is obtained as:

Pobs
ij ¼ Covði; jÞ � STL ð1Þ

STL represents the trust level of the node and it is calculated as the weighted
average of the direct trust, recommendation trust and indirect trust [3]. PcvrðiÞ repre-
sents the probability that the target region is covered by any sensor node. The proposed
protocol works in rounds, where every round consists of three phases: setup phase,

Fig. 1. Example of the sensor target relationship in a network

Trust Based Target Coverage Protocol 189

prashant.anantharaman.gr@dartmouth.edu

sensing phase and transmission phase. In the setup phase the base station determines
the status of the node to keep in active state on the basis of coverage probability and
trust values using the fuzzy logic. We have considered the fuzzy process consisting of
two input variables and single output variable and determined 9 rules for the obser-
vation probability of the nodes as shown in Table 1. The second phase is sensing phase
in which the nodes senses the environmental phenomenon. In the transmission phase
the nodes send their data to the base station in either single hop or multi hop com-
munication [6, 7].

3 Experimental Results

We have considered a network of randomly and uniformly deployed nodes in the
rectangular nodes of dimension 100 × 100. The experiments are carried out using the C
language and MATLAB. Various experiments were carried out by varying the number
of the sensor nodes from 10 to 70 and the number of target nodes from 5 to 15. The
active set of nodes is computed by repeatedly observing the observing probability. We
have considered the sensing radius rs = 20 cm, detection error range re = 10 cm,
coverage threshold value for every target = 0.5 and the various hardware parameters
related to sensing and communication characteristics k ¼ a ¼ b ¼ 0:5. The results
obtained after varying the number of nodes and targets are shown in Fig. 2 and Table 2.
Figure 2a represents the set of active nodes obtained by varying the number of nodes
which is considerably less than the total number of nodes. In Fig. 2b the number of set
covers obtained in each case is shown. It can be observed that the number of set covers
increase linearly with the increase in the number of nodes and the targets. Figure 2c and
d shows the energy saved in each case and the network lifetime in each case. The
results shows that the network lifetime is increased by a factor of 4 for the considered
iteration.

Table 1. Rule base for the node
status

Cov. prob. Trust Node status

Low Low Very poor
Low Medium Poor
Low High Poor
Medium Low Poor
Medium Medium Average
Medium High Good
High Low Poor
High Medium Good
High High Very good

Table 2. Values obtained in various experiments

S. no. Node Target Energy
saving

No. of
active
nodes

Set
covers

1 10 5 60 4 9
2 15 5 67 5 15
3 20 5 80 4 10
4 25 10 76 6 20
5 40 10 78 9 25
6 50 10 82 9 30
7 70 10 85 10 35
8 45 15 76 11 40
9 70 15 81 13 50

190 P. Chaturvedi and A.K. Daniel

prashant.anantharaman.gr@dartmouth.edu

4 Conclusion

In this paper the proposed protocol is a node scheduling protocol for target coverage
based on coverage probability, trust values and node contribution. The fuzzy inference
is used for determining the node status to keep in active state. We have performed a
number of experiments by varying the number of nodes and targets. The results show
that the proposed protocol improves the network performance in terms of energy
savings by a factor of 4 which implies that the lifetime is also improved by the same
factor.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Commun. Mag. 40, 102–114 (2002)

2. Taghikhaki, Z., Meratnia, N., Havinga, P.J.M.: A trust-based probabilistic coverage algorithm
for wireless sensor networks. In: 2013 International Workshop on Communications and
Sensor Networks (ComSense 2013), Procedia, Computer Science, vol. 21, pp. 455–464
(2013)

(a) (b)

(c) (d)

Fig. 2. Performance of the proposed protocol in terms of (a) no. of active nodes (b) no. of set
covers (c) Energy savings (d) Network Lifetime

Trust Based Target Coverage Protocol 191

prashant.anantharaman.gr@dartmouth.edu

3. Jiang, J., Han, G., Wang, F., Shu, L., Guizani, M.: An efficient distributed trust model for
wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 26, 1228–1237 (2014)

4. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad hoc sensor networks.
Comput. Commun. J. 29(4), 413–420 (2006)

5. Chaturvedi, P., Daniel, A.K.: An energy efficient node scheduling protocol for target coverage
in wireless sensor networks. In: 5th International Conference on Communication System and
Network Technologies (CSNT 2015), pp. 138–142, April 2015. doi:10.1109/CSNT.2015.10

6. Chaturvedi, P., Daniel, A.K.: Trust based node scheduling protocol for target coverage in
wireless sensor networks. In: Shetty, N.R. et al. (eds.), 3rd International Conference on
Emerging Research in Computing, Information, Communication & Applications (ERCICA
2015), Bangalore, Springer India (2015). doi:10.1007/978-81-322-2550-8_16

7. Chaturvedi, P., Daniel, A.K.: Trust based energy efficient coverage preserving protocol for
wireless sensor networks. In: International Conference on Green Computing and Internet of
Things (ICGCIOT 2015) (2015)

8. Chaturvedi, P., Daniel, A.K.: Lifetime optimization for target coverage in wireless sensor
networks. In: 8th Annual ACM India Conference Compute 2015, pp. 47–53 (2015). http://dx.
doi.org/10.1145/2835043.2835048

192 P. Chaturvedi and A.K. Daniel

prashant.anantharaman.gr@dartmouth.edu

http://dx.doi.org/10.1109/CSNT.2015.10
http://dx.doi.org/10.1007/978-81-322-2550-8_16
http://dx.doi.org/10.1145/2835043.2835048
http://dx.doi.org/10.1145/2835043.2835048

An Internet of Things Based Software
Framework to Handle Medical Emergencies

K.G. Srinivasa, Kartik S. Gayatri, Maaz Syed Adeeb(B), and Nikhil N. Jannu

M S Ramaiah Institute of Technology, Bangalore, India
maaz.adeeb@gmail.com

Abstract. A software framework is a reusable design that requires vari-
ous software components to function, almost out of the box. To specify a
framework, the creator must specify the different components that form
the framework and how to instantiate them. Also, the communication
interfaces between these various components must be defined. In this
paper, we propose such a framework based on the Internet of Things
(IoT) for developing applications for handling emergencies of some kind.
We demonstrate the usage of our framework by explaining an application
developed using it. The application is a system for tracking the status
of autistic students in a school and also for alerting their parents/care
takers in case of an emergency.

Keywords: Framework · Internet of Things · Autism · Emergency

1 Introduction

The Internet of Things (IoT) [1] based devices can be used to enable remote
health monitoring and emergency notification systems. These health monitoring
devices can range from blood pressure and heart rate monitors to advanced
devices capable of monitoring specific patients, ensuring that proper treatment
is being administered. This paper provides an IoT based framework to handle
medical emergencies and takes up autistic student monitoring as a case study to
analyse the application of this framework.

2 Architecture

The architecture (Refer Fig. 1) of the framework is divided into four modules:

– Data collection
– Representational State Transfer (REST) services
– Data storage and analysis
– Client applications

c© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 193–198, 2016.
DOI: 10.1007/978-3-319-28034-9 26

prashant.anantharaman.gr@dartmouth.edu

194 K.G. Srinivasa et al.

Fig. 1. Software architecture

2.1 Data Collection

Our framework requires an engineer to just plug the sensors required to his
microcontroller and write sensor specific code to access the data. We provide the
architecture for handling of various sensors and services to send over data to the
cloud.

The entire data collection module is run on the microcontroller. All the sen-
sors need to be connected to the microcontroller. The main controller program
runs a forever loop and accesses data from each of the connected sensors or as
the engineer wishes to collect the data, serializes it and sends it over to the cloud,
at regular intervals of time.

2.2 REST Services

The entire communication between various components in our framework is built
on top of REST services. We provide a ready to use, simple REST API on the
cloud, where the engineer only needs to code how various end points are supposed
to behave.

2.3 Data Storage and Analysis

Our framework uses MongoDB [8] as the data storage. Data storage becomes
straight forward here as our data is being sent over as JSON, which reduces any
extra manipulation overhead on the cloud side. We do not provide any specific
features for data analysis in our framework, but it should be straight forward to
integrate third party libraries. The source code of our framework is available on
GitHub [6].

prashant.anantharaman.gr@dartmouth.edu

An Internet of Things Based Software Framework 195

2.4 Client Applications

Client applications are basically the application layer. They can be web based,
mobile or even hardware based. These applications consume the data from the
cloud by using the REST services and give the engineer a freedom to create what
ever he likes. We demonstrate one such application in the following sections.

3 Application

We demonstrate the application of our framework with an IoT based Autistic
Student Health Tracking and Analysis system.

3.1 Autism

Autism is a neurodevelopmental disorder characterized by impaired social inter-
action, verbal and non-verbal communication and restricted and repetitive
behavior. The signs typically develop gradually, but some children with autism
will reach their developmental milestones at a normal pace and then regress [2].

3.2 Existing Solutions

Traditional measures relied on paper-and-pencil recordings of teachers and par-
ents based on direct observations or video-based methods [4]. However, such
methods are expensive, tedious and time consuming. The work done in [3] cor-
relate environmental contexts with the occurrence of stereotypical behaviors to
identify any environmental factors like sound, which may trigger such behaviors
or emotional upsets.

3.3 Hardware

The sensors used are from Shimmer [7]. One of the key functions of the Shim-
mer board is its ability to communicate as a wireless platform. Shimmer uses a
Bluetooth Radio module.

We have used Intel Edison as the microcontroller. It collects the data from
the Shimmer sensors over bluetooth, processes it and sends it over for storage
and analysis.

3.4 Analysis

Classification of actions performed by a person has been carried out using a
two-step process.

In the first phase, training data is used to determine the reference index for
each class and in the second phase, the real time data is analyzed to classify the
action at any given interval of time.

Step 1: Learning from data

prashant.anantharaman.gr@dartmouth.edu

196 K.G. Srinivasa et al.

Fig. 2. Sample accelerometer readings

– Synthetic data was collected from 3 participants performing 3 different kinds
of actions, namely Sitting, Walking and Vigorous hand movements.

– Statistical analysis was done on this data to derive a standard deviation (SD)
of the recorded accelerometer readings for each of these participants.

– Mean of these deviations of all the participants was found and taken to be a
reference index for further classification. This forms the reference model for
further classification of real time data.

Step 2: Classification of real time data.

– On receiving real time sensor data, the algorithm divides the data into win-
dows of 500 continuous data points each, with a sliding range of 100 data
points. Then it calculates the SD of the accelerometer readings of each win-
dow, in order to classify that window into some activity. It slides the window
and repeats the process.

– If the algorithm figures out that there was a window in which the SD was in
the range of vigorous hand motions activity, then an alert is triggered.

3.5 Client Application

– Web application has been written using Bootstrap and jQuery. The web appli-
cation makes AJAX calls to the cloud to get the sensor data in real time and
also the other details of the students.

– It also shows the results of the students data analysis in real time. Flot.js
charting library is used for the creation of real time interactive charts.

– Push notifications are sent to registered android devices to raise an alert.

3.6 Overall View of Solution

Using body sensors, real time data of the student is collected. Using statistical
analysis, we compare new readings with synthetic training data and classify the

prashant.anantharaman.gr@dartmouth.edu

An Internet of Things Based Software Framework 197

Fig. 3. Application architecture

readings as an alert or not. From the result of the analysis and the classification,
we give an alert using an android application and a means to analyze the alert
on a web application. Refer Fig. 3.

The implementation of the application is available on GitHub [5].

3.7 Results

The results of our analysis are tabulated in Table 1. Also, a sample graph of
accelerometer readings of all 3 actions performed is shown in Fig. 2. The actions
are siting, vigorous movement and walking respectively.

Clearly, there is considerable success in distinction between the vigorous
movement action from the rest and can be used for triggering an alert.

Table 1. Standard deviations of accelerometer at various axes and our algorithm’s
accuracy to classify them

Action X-axis Y-axis Z-axis Accuracy

Sitting 45.43 24.56 36.76 91.34 %

Walking 153.29 167.41 154.65 34.67 %

Vigorous movement 702.34 723.9 847.34 93.91 %

prashant.anantharaman.gr@dartmouth.edu

198 K.G. Srinivasa et al.

3.8 Conclusion and Future Scope

Autism is a mental condition with a loss of social life and loss of ability to
communicate with the public. This system provides a means of communication
in times of emergencies and avoid the causes as a result of the mood swings in
autistic students. The system comes with an android application for alerting the
teachers and parents and a web application for analysis. The system provides the
real time analysis on the various sensor data obtained by means of a wearable
sensor and also helps in monitoring the condition of the student in real time.
Abnormalities in the sensor readings are noted and alerts are sent.

The major work that can be taken is in designing a compact, non-intrusive
wearable device. Better and stronger algorithms can be developed which can
improve the efficiency of classification and reduce the latency. Sensors that take
the surrounding noise for predicting the mood can be used. Also, mood swings
can be calculated accurately by using PPG signals. Heart rate and respiratory
rate can be used for calculations and analysis in various ways.

References

1. Atzori, L., Iera, A., Morabito, G.: The Internet of Things - A survey, May 2010
2. Myers, S.M., Johnson, C.P.: Management of children with autism spectrum disorders

(2007)
3. Chuah, M., Diblasio, M.: Smartphone based autism social alert system. In: 2012

Eighth International Conference on Mobile Ad-hoc Sensor Networks (MSN), pp.
6–13, December 2012

4. Sturmey, P.: Video technology and persons with autism and other develop-mental
disabilities: an emerging technology for positive behavior support. J. Positive Behav.
Interv. 5, 12–21 (2003)

5. Implementation of the health monitoring application. https://github.com/maaz93/
iot-devs

6. Source code of the framework. https://github.com/maaz93/iot-framework
7. Shimmer sensor kit. http://www.shimmersensing.com/
8. MongoDB. https://www.mongodb.org/

prashant.anantharaman.gr@dartmouth.edu

https://github.com/maaz93/iot-devs
https://github.com/maaz93/iot-devs
https://github.com/maaz93/iot-framework
http://www.shimmersensing.com/
https://www.mongodb.org/

Minimal Start Time Heuristics for Scheduling
Workflows in Heterogeneous

Computing Systems

D. Sirisha1(&) and G. VijayaKumari2

1 Department of CSE, Pragati Engineering College, Surampalem, India
sirishad998@gmail.com

2 Department of CSE, JNTUH, Hyderabad, India
vijayakumari.gunta@gmail.com

Abstract. Heterogeneous computing systems require efficient task-to-processor
mapping for attaining high performance. Scheduling workflows on heteroge-
neous environments is shown to be NP-Complete. Several heuristics were
developed to attain minimum schedule lengths. However, these algorithms
employ level-wise approach of scheduling tasks. This indirectly assigns higher
priority to the tasks at lower levels than those at higher levels. Further, the start
time of tasks at higher levels is constrained by the completion times of tasks at
lower levels. The present work proposes a novel heuristic based global
scheduling algorithm namely Minimal Start Time (MST) algorithm for work-
flows. The proposed approach focuses on minimizing the start times of tasks
which are dependent on the tasks at lower levels to generate shorter span
schedules. The primary merit of this scheme is due to the elimination of level
constraints whenever there are no dependency constraints. The performance of
MST algorithm is evaluated in terms of normalized makespan, speedup, effi-
ciency and improvement of 5–20 % in 80 % of the cases is achieved in com-
parison to the earlier work.

Keywords: Task scheduling � Workflows � Heuristics � Schedule length �
Heterogeneous computing systems

1 Introduction

Complex applications can be competently solved by decomposing into a set of tasks
having dependencies, often modeled as workflow. Workflow applications can exploit
Heterogeneous Computing Systems (HCS) to execute the parallel tasks for attaining
high performance. High potentials of HCS which includes resources with a range of
processing capabilities can be explored by efficiently scheduling the tasks in workflow.
Scheduling defines the execution order of the tasks and maps the tasks to the appro-
priate processor. Obtaining an optimal schedule for a workflow is proven to be
NP-Complete and cannot be solved unless P = NP [3]. Heuristics can be employed to
generate near optimal solutions.

Heuristic approaches are static i.e., the tasks attributes such as processing time,
inter-task dependencies and the structure of workflow are available a-prior [1, 2].

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 199–212, 2016.
DOI: 10.1007/978-3-319-28034-9_27

prashant.anantharaman.gr@dartmouth.edu

Heuristic algorithms are categorized into list based, task duplication based and cluster
based scheduling. List based approach generates schedules in two phases. The first
phase prioritizes the tasks and lists them in the decreasing order of priority. In the
second phase, tasks are mapped to the fastest processor. In general, list based heuristics
generate reasonable schedules with less complexity [5].

Heuristics used to assign priorities to tasks have considerable effect on the schedule
and therefore have further scope for producing effective schedules. A major challenge
in scheduling workflows is the inter-task dependencies besides resource heterogeneity
and dynamism. A dependent task has to wait for its inflowing data from its prede-
cessors while its executing processor runs idle. Motivated by this challenge, a global
scheduling strategy namely MST algorithm is devised which examines the effect on the
performance by queuing all tasks whose dependency constraints are satisfied and gives
fair chance for the execution of such tasks. The proposed scheduling approach pro-
duces shorter span schedules by efficiently minimizing the start time of dependant tasks
and competently handles inter-task dependencies. The major scheduling aspects
addressed by the proposed scheduling policy are: prevents a ready task in entering the
wait state, guarantees fairness such that no ready task starves regardless of their size or
processing times. That is, each ready task will eventually be executed.

The remaining of the paper is structured as follows. In Sect. 2, workflow scheduling
problem with required terminology is presented. The related work is discussed in
Sect. 3. The proposed MST algorithm is illustrated in Sect. 4. The performance eval-
uation of MST algorithm with earlier work is presented in Sect. 5. Section 6 summarizes
the findings of the work and outlines the future scope of research work on the same
topic.

2 Workflow Scheduling Problem

The workflow scheduling problem essentially comprises of three components namely
workflow application, a HCS and a scheduling strategy.

2.1 Workflow Model

A Workflow application consists of inter-dependent tasks modeled as Directed Acyclic
Graph, G = < V, E > where V represents a set of t tasks. And E is a set of directed edges
with no cycles. Every directed edge di,j 2 E imposes dependency constraint between
the tasks ti and tj where i ≠ j, such that task tj can be only be performed if its
predecessor ti is finished. Every edge di,j is associated with a non-negative integer
which indicates the data flow time between the tasks ti and tj. And di,j = 0, when both
the tasks ti and tj are executed on the same processor. Satisfying the dependency
constraints, the task becomes free and it is marked as ready after receiving the data
from its predecessors.

200 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

2.2 The HCS Model

HCS consists of p processors with diverse processing capabilities. The processing time
of t tasks on p processors is presented by Processing Time (PT) matrix of order
t × p where each element ei,j denotes the estimation of processing time of task ti on
processor pj. A t × t matrix indicates the Data Flow Time (DFT) among t tasks in a
workflow where each element di,j indicates data flow time between the tasks ti and tj.
The processors are fully connected and tasks cannot be preempted while processing.
A task having no predecessor is termed as start task and with no successor is defined as
sink task. In general, a workflow is assumed to be consisting of a pair of start and sink
tasks. If such tasks occur more than one in number then a pseudo task with zero
processing time and zero flow times is connected to these tasks. An example appli-
cation workflow and the processing time matrix are presented in Fig. 1 and Table 1
respectively.

The essential attributes for defining the workflow scheduling problem are Earliest
Start Time (EST) and Earliest Finish Time (EFT) of a task [2]. EST is the earliest time a
task ti can start its processing on processor pj and is denoted as EST(ti, pj). It is
determined either by the ready time of a task or by the available time of a processor,
whichever is maximum. The ready time of task ti is the time the dependency constraints
of ti are satisfied and ti has obtained data from its predecessors, represented as ready (ti)
and computed using (1)

ReadyðtiÞ ¼ maxtm2 predðtiÞ AFTðtmÞþ dm;i
� � ð1Þ

where tm 2 pred (ti) are a set of predecessors of ti. AFT(tm) is the Actual Finish Time of
the predecessor tasks. dm,i is the data flow time required to transmit the data between
the tasks tm and ti. And dm,i = 0, if the tasks tm and ti are executed on the same
processor. For start task tstart, ready(tstart) is 0. The processor available time is the time
the processor has finished executing the previous task and is prepared to perform the
next task and denoted as avail (pj). The EST(ti, pj) is the maximum of these two
parameters, defined using (2).

ESTðti; pjÞ ¼ max readyðtiÞ; availðpjÞ
� � ð2Þ

The EFT of task ti on processor pj is denoted by EFT (ti, pj) and defined using (3)

EFTðti; pjÞ ¼ ESTðti; pjÞþ ei;j ð3Þ

where ei,j is the processing time of task ti on processor pj. The schedule length known
as makespan, is the AFT of sink task tsink.

makespan ¼ AFTðtsinkÞ ð4Þ

The objective of workflow scheduling problem is to define the scheduling order of
the tasks and map them to processors so as to minimize the makespan of workflow by
maximizing the parallelization of tasks.

Minimal Start Time Heuristics for Scheduling Workflows 201

prashant.anantharaman.gr@dartmouth.edu

3 Related Work

Effective scheduling of workflows in HCS has profound influence on the performance
and hence motivated the researchers to study this area profusely. Heuristics for
attaining minimum makespan abound in the literature [1, 4, 6, 8, 9]. The efficacy of list
based heuristics is due to its near optimal solution generation with less complexity
[1, 2, 4, 6, 9]. In this section, the most cited list scheduling algorithms namely
Heterogeneous Earliest Finish Time (HEFT) [2], Performance Effective Task
Scheduling (PETS) [4] and Critical Path On a Processor (CPOP) [2] are detailed.

HEFT scheduling strategy proceeds in two stages, task prioritization stage and
processor selection stage. The tasks are prioritized using upward rank computed by
summing the processing times and data flow times along the longest path from the task
to the sink task. The tasks are then listed in the decreasing order of their rank. In the
second stage, the selected task is paired with each processor and the processor which
yields least EFT is selected for performing the task.

PETS algorithm works in three stages: In the first stage the tasks are grouped into
levels to execute the entire level of parallel tasks. The second stage determines the
execution order of tasks at each level based on the priority. Priority to a task is
computed by summing up the attributes of task viz., average processing time, total data
outflow time and highest rank of its immediate predecessor tasks. The third stage
adopts HEFT’s strategy to map a task-to-processor.

The CPOP algorithm assigns priority to tasks using upward and downward ranks.
The downward rank of task ti is the span of the longest path from start task to ti,
excluding ti’s processing time. In the second phase, CPOP algorithm identifies the
critical path tasks and maps these tasks to the processor that yields minimum pro-
cessing time. And the non-critical tasks are mapped to the processor with minimum
EFT, as in HEFT.

46

t0

t2t1 t3

t5

t4

t6

t7

7985 100 66

87 708656

9558

Fig. 1. An application workflow

Table 1. Processing time matrix

Task p1 p2

t0 70 84

t1 68 49

t2 78 96

t3 89 26

t4 30 88

t5 66 86

t6 25 21

t7 96 26

202 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

4 The Proposed MST Algorithm

Mostly, list based scheduling heuristics [2, 4] from the literature execute the tasks level
wise. The earlier algorithms imposed level-wise constraint in addition to the depen-
dency constraint. The tasks are categorized level-wise to execute them in parallel. The
tasks at lower level attain higher priority than the tasks in higher level. Within the same
level, tasks are ordered for execution based upon their priority.

For workflow in Fig. 1, the execution of tasks employing level-wise strategy begins
with start task t0. The completion of task t0 satisfies the dependency constraints for
tasks t1, t2, t3 and t4 at level 1, hence these tasks get free. If however the tasks t1, t2 are
executed ahead of t3 and t4 tasks, the task t5 at level 2 which is dependent only on t1 and
t2 tasks has to wait till t3 and t4 tasks are completed to become free. On close exam-
ination of these tasks it is evident that task t5 can equally compete with tasks t3 and t4
when t1 and t2 are completed. The earlier algorithms imposed level-wise constraint on
task t5 though there was no dependency between the task t5 at level 2 and the tasks t3, t4
at level 1. Moreover, t6 becomes free after t3 is executed. Though t5 and t6 tasks at level
2 are independent of t4 at level 1, scheduling of these tasks is constrained by the
completion time of t4. The EST of the free tasks at higher levels must not be constrained
by the finish times of tasks at lower levels. Therefore, it is proposed that the depen-
dency constraints must be viewed globally and hence independent of levels.

For the same workflow, the EST of tasks t5, t6 and t7 employing PETS, HEFT and
CPOP algorithms is always greater than the EST of these tasks when MST algorithm is
employed. For PETS and HEFT algorithms, EST of these tasks is same and it is 230,
300 and 420 time units while for CPOP algorithm it is 237, 206 and 379 time units.
However, employing MST strategy the EST of these tasks is as low as 204, 237 and
357 time units. With the elimination of level constraints the free tasks are released and
queued up, this led MST algorithm in reducing the EST of free tasks. This reduction in
the EST of free tasks promotes MST approach in generating shorter makespans.

MST algorithm generates schedules in two stages namely task sequencing stage
and task-to-processor mapping stage. The task sequencing stage sequences the order of
execution of tasks. The second stage decides the suitable processor for performing the
task and maps to the processor. The two stages are detailed below.

4.1 Task Sequencing Stage

This stage defines the sequence of processing tasks according to the priority of each
task. Priority is assigned to tasks on the basis of rank computed using two parameters
namely Average Processing Time (APT) and Total Data Flow Time (TDFT). The APT
of task ti is defined as the average processing time of ti on p processors and computed
using (5).

APTðtiÞ ¼
Xp
j¼1

ei;j=p ð5Þ

Minimal Start Time Heuristics for Scheduling Workflows 203

prashant.anantharaman.gr@dartmouth.edu

where 1 ≤ i ≤ t, t is the number of tasks and 1 ≤ j ≤ p, p is the number of processors.
The TDFT (ti) is defined as the sum of Data Inflow Time (DIT) and Data Outflow

Time (DOT). DIT is defined as the time incurred for a task to receive the input data
from its immediate predecessors, it is computed using (6).

DITðtjÞ ¼
Xm
i¼1

di;j ð6Þ

where 1 ≤ i ≤ m, m is the number of predecessors of task tj. DOT is defined as the time
required for a task to transfer the output data to its immediate successors.

DOTðtjÞ ¼
Xn
k¼1

dj;k ð7Þ

where 1 ≤ k ≤ n, n is the number of successors of task tj. The TDFT of an intermediate
task tj is computed using (8).

TDFTðtjÞ ¼ DITðtjÞþDOTðtjÞ ð8Þ

where 1 ≤ j ≤ t, t is the number of tasks. The rank of a task tj is computed using APT
and TDFT values and defined as

rankðtjÞ ¼ APTðtjÞþ TDFTðtjÞ ð9Þ

where 1 ≤ j ≤ t, t is the number of tasks.
The tasks in workflow are assigned ranks. Initially, only the start task is free and is

added to the ready queue. Tasks are inserted into the ready queue as they become free
and are listed according to their rank. Maximum rank task attains utmost priority. Ties
are solved using APT value i.e., task with higher APT value gains higher priority.

4.2 Task-to-Processor Mapping Stage

This stage selects the suitable processor for performing the task by computing the EFT
of a task on p processors. The processor with least EFT is decided as the best processor
for a task. To enhance the performance, this stage employs Insertion Based Policy
(IBP) [7] which identifies the empty slots in the schedule and checks the likelihood of
inserting a task if an empty slot is sufficient to execute the task. When such empty slot
is unavailable, the task is performed after the selected processor is available. If the EFT
of a task is same on more than one processor, then the processor which is sparingly
utilized is preferred. Table 2 presents the stepwise trace of this stage.

For workflow in Fig. 1, the task sequence generated by MST algorithm is {t0, t2, t1,
t5, t3, t6, t4, t7}. The makespan of MST, HEFT, PETS and CPOP algorithms is 383,
446, 446 and 405 time units respectively. MST algorithm generated shorter makespan
compared to HEFT and PETS algorithm by 63 time units and 22 time units compared
to CPOP algorithm.

204 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

4.3 The MST Algorithm

In line 1 and 2, the algorithm computes APT, TDFT and rank values for all the tasks in
workflow. In line 3, ready queue is constructed and the tasks which are free are queued
up. Initially, the start task is ready and it is placed in the ready queue. In the while loop
from lines 6–14, each iteration selects a task ti with maximum rank from the ready
queue. The EFT of ti on p processors is computed using IBP in line 9. In line 11, task ti
is allocated to processor pj with least EFT (ti, pj). In line 12, upon the completion of ti,
its successors which become free are identified and in line 13 they are inserted into the
ready queue (Fig. 2).

Table 2. The stepwise trace of task-to-processor mapping phase of MST algorithm

Step Ready queue Task selected p1 p2 Best processor
EST EFT EST EFT

1 t0 t0 0 70 0 84 p1
2 t2, t1, t3, t4 t2 70 148 149 245 p1
3 t1, t3, t4 t1 148 216 155 204 p2
4 t5, t3, t4 t5 291 357 204 290 p2
5 t3, t4 t3 148 237 290 316 p1
6 t6, t4 t6 237 262 307 328 p1
7 t4 t4 262 292 290 378 p1
8 t7 t7 348 444 357 383 p2

Fig. 2. The MST algorithm

Minimal Start Time Heuristics for Scheduling Workflows 205

prashant.anantharaman.gr@dartmouth.edu

4.4 The Complexity Analysis of MST Algorithm

In general, the time complexity of scheduling algorithm is defined in terms of number
of tasks t, number of edges e and the number of processors p. The analysis of time
complexity of MST algorithm is as follows.

In step 1, APT and TDFT values for all tasks in workflow are computed with the
time complexity of O(t . p) and O(e) respectively. In step 2, the rank is calculated for all
tasks in time O(t + e). The complexity for inserting each free task in the ready queue
implemented using binary heap in step 4 is O(log t) and for inserting t tasks it is O(t log
t). Sorting of tasks in the ready queue in step 5 is done in O(t log t) steps. The highest
priority task from the ready queue in step 7 is deleted with a complexity of O(1).
Therefore, the time complexity of task sequencing phase is O(t log t + e). The for loop
from the steps 8-10 determines the EFT of a task on p processors and the processor
with minimum EFT is selected. The complexity of task-to-processor mapping phase is
of order O(t + e) p. The overall time complexity of MST algorithm is O(t log t + e) p.

5 Performance Analysis

This section analyses and compares the performance of MST algorithm with the
algorithms detailed in the related work. For experimental evaluations randomly gen-
erated and real world application workflows are considered. The scheduling strategies
are evaluated by the following performance metrics as stated in [1, 2, 5].

Normalized Makespan (NM). Makespan is the primary metric used for analyzing the
performance. This metric compares the workflows with diversified topologies and
hence it is essential to normalize the makespan to its lower bound lb. NM is computed
by relatively comparing the makespan with its lb. The value of lb is calculated by
summing the minimum processing time of tasks on the critical path, computed using
(10). Critical path of a workflow is the longest path from the start task to sink task. The
algorithm which yields lowest NM is regarded as the better performing algorithm.

NM ¼ makespan of algorithm
lb

ð10Þ

Speedup. Speedup is the metric for relative performance. It determines the perfor-
mance enhancement accomplished due to parallelization of tasks in a workflow in
comparison to the sequential processing of tasks. The scheduling algorithm which
maximizes the parallelization of tasks in a workflow is considered as superior. It is
computed using (11)

Speedup ¼ sequential processing time
parallel processing time

ð11Þ

Efficiency. Efficiency measures the time for which the processors are employed. It is
defined as the ratio of speedup to the number of processors employed in HCS, com-
puted using (12). Usually, efficiency is in between 0 and 1. The scheduling algorithm
with higher efficiency for a workflow nearing to 1 is considered as better.

206 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

Efficiency ¼ Speedup
number of processors

ð12Þ

Execution Time of Algorithm. Execution time of algorithm is the time required for
algorithm to generate the schedule.

Frequency of Superior Schedules. This metric counts the frequency of superior,
equivalent and inferior schedules generated by an algorithm in comparison with the
related algorithms.

5.1 Randomly Generated Workflows

The input parameters essential for generating workflows with diverse topologies are
presented below [2].

• Workflow size (t). The number of tasks t in a workflow.
• Data flow time to Processing Ratio (DPR). DPR is the ratio of average data flow

time to the average processing time in a workflow. The workflow with very low
DPR value is regarded as processing intensive.

• Shape Factor (α). The shape factor α determines the number of levels l in a
workflow and the number of parallel tasks m at each level. The value of l and
m varies from graph to graph. The maximum l value for a workflow is

ffiffi
t

p
/α i.e., a

sink task is at level
ffiffi
t

p
/α, where t is the workflow size. The t value is randomly

selected with mean equal to
ffiffi
t

p
× α. The smaller α values generate longer workflows

with low parallelism while higher α values generate shorter workflows with high
degree of parallelism.

• Heterogeneity Factor (γ). The deviation in the processing times of p processors in
HCS is specified by γ. Higher γ values indicate wide range of processing times
while lower γ values implies less variation. The processing time ei,j of task ti on
processor pj is randomly selected from the range:

APT � ð1� c=2Þ� ei;j �APT � 1þ c=2ð Þ ð13Þ

where APT is the average processing time. For the experimentations, workflows are
generated considering the following values for the above stated parameters.

• t = {40,50,60,70,80,90,100,200,300,400,500}
• APT = {30,40,50,60,70,80,90,100}
• DPR = {0.1,0.5,0.75,1.0,2.0,5.0,7.5,10.0}
• α = {0.5,1.0,1.5,2.0}
• γ = {0.1,0.25,0.5,0.75,1.0}

With the above combination 70,400 workflows are generated. The experimenta-
tions conducted through simulation with wide range of parametric values reduce the
effect of dispersion in the schedule lengths.

Minimal Start Time Heuristics for Scheduling Workflows 207

prashant.anantharaman.gr@dartmouth.edu

5.2 Performance Analysis on Random Workflows

The performance of algorithms for average NM and average speedup with respect to
various workflow sizes is shown in Fig. 3a and 3b. Each point plotted in the graphs
(Fig. 3a and 3b) is the average of the data acquired from 6400 experimental results. The
data trend in the graph depicted in Fig. 3a shows linear relationship between average
NM and workflow size t. The percentage of improvement of MST algorithm over
HEFT, PETS and CPOP algorithms for t ≤ 100 is 5.07 %, 11.23 % and 17.11 % and for
t = 500 it is 8.58 %, 13.77 % and 22.14 % respectively. For t > 100 the makespan
drastically increased for all algorithms and the performance of MST algorithm grad-
ually increased with t value over HEFT, PETS and CPOP algorithms.

The progress in the speedup of MST algorithm becomes more manifest with the
increase in t value (shown in Fig. 3b) and it is 9.44 %, 10.97 % and 15.83 % compared
to HEFT, PETS and CPOP algorithms. This performance gain achieved by MST
algorithm is due to maximizing the parallelization of free tasks as these tasks are
released instantaneously after satisfying their dependency constraints.

The effect of DPR on average NM is depicted in Fig. 3c. Every data point plotted in
the graph is the average of 8800 experimentations. It can be observed from Fig. 3c that
all the scheduling algorithms are affected when DPR values are high. The rise in DPR
values causes data dependency overhead among the tasks to dominate the processing
times in a workflow. The performance improvement (%) of MST algorithm over HEFT,
PETS and CPOP algorithms for DPR ≤ 2 is 8.96 %, 10.75 % and 22.98 % and increased
to 11.28 %, 17.65 % and 29.28 % when DPR ≥ 5. The significant growth in the
performance of MST algorithm for higher DPR values can be is ascribed to its com-
petency in handling heavily dependent tasks by determining an effective task sequence.

Figure 3d presents the average NM as a function of shape parameter (α). Each data
point plotted in Fig. 3d is averaged from 17600 experimentations. The performance of
the algorithms is found to deteriorate as the α value increases and much deviation in the
makespan of the algorithms can be noticed for higher α values. However, MST
algorithm surpasses HEFT, PETS and CPOP algorithms for varied α values and
demonstrates the fact that the proposed strategy explores higher levels of task paral-
lelism by eliminating level constraints. On average, the performance of MST algorithm
is superior to HEFT, PETS and CPOP algorithms by 10.34 %, 20.54 % and 25.64 %.

The average efficiency of the algorithms is illustrated in Fig. 3e. The average
efficiency of the algorithms dwindles with the increase in the number of processors.
The efficiency (%) of MST algorithm is better by 11.53 %, 18.77 % and 25.04 %
against HEFT, PETS and CPOP algorithms respectively. The average execution times
of the algorithms for varied sized workflows are presented in Fig. 3f. When t value is
small trivial difference in the execution times of algorithms can be observed, however
this drastically increased with the workflow size. For various workflow sizes, MST
algorithm is observed to be faster than HEFT, PETS and CPOP algorithms by 16.02 %,
41.07 % and 59.72 % respectively. The rationale behind the performance of MST
algorithm is due to the advantage gained by preponing the start times of dependent
tasks ensuing in the reduction of finish times of these tasks.

208 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

Table 3 presents the relative comparison of the makespans generated by the
scheduling algorithms for 70,400 randomly generated workflows. The data in each cell
indicates the frequency of superior, equivalent or inferior makespans generated by
algorithm on row head compared with the algorithm on column head. The overall
column provides the number of cases (%) for which the algorithm on row head has
generated superior, equivalent or inferior schedules against all other algorithms. It can
be observed that MST algorithm produced superior schedules compared to HEFT,
PETS and CPOP algorithms in 79 % of the cases.

5.3 Performance Analysis on Real World Application Workflows

The performance of scheduling strategies is also evaluated with respect to the real
world application workflows. The structure of the application workflows is familiar,

3

4

5

6

7

8

9

40 50 60 70 80 90 100 200 300 400 500

A
ve

ra
ge

 N
M

Workflow Size

MST
HEFT
PETS
CPOP

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

40 50 60 70 80 90 100 200 300 400 500

A
ve

ra
ge

 S
pe

ed
up

Workflow Size

MST
HEFT
PETS
CPOP

3.5

5.5

7.5

9.5

11.5

13.5

15.5

0.1 0.5 0.75 1 2 5 7.5 10

A
ve

ra
ge

 N
M

DPR

MST
HEFT
PETS
CPOP

0

2

4

6

8

10

12

0.2 0.5 1 1.5

A
ve

ra
ge

 N
M

Shape Parameter

MST
HEFT
PETS
CPOP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 8 12 20

A
ve

ra
ge

 E
ff

ic
ei

en
cy

Number of Processors

MST
HEFT
PETS
CPOP

0

500

1000

1500

2000

2500

40 50 60 70 80 90 100 200 300 400 500

A
ve

ra
ge

 E
xe

cu
tio

n
 T

im
e

Workflow Size

MST
HEFT
PETS
CPOP

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The performance results on random workflows

Minimal Start Time Heuristics for Scheduling Workflows 209

prashant.anantharaman.gr@dartmouth.edu

hence the parameters t and α are not required. The DPR and γ values are the only inputs
essential for generating application workflows.

Fast Fourier Transformation (FFT). For generating FFT workflows [10], the
parameter namely input points (M) is used to determine the workflow size t. The
M value is varied from 2 to 32, incrementing by the power of 2. For M input points, the
workflow size is 2 × (M-1) + (M log2 M). Figure 4a depicts the graph plotted with
average NM values as a function of various input points. The average NM of MST
algorithm is lesser than HEFT, PETS and CPOP algorithms by 5.77 %, 13.825 % and
28.87 % respectively. Figure 4b presents the average efficiency of the algorithms for
varied number of processors and MST algorithm has shown superior performance over
HEFT, PETS and CPOP algorithms by 8.78 %, 13.5 % and 24.87 % respectively.

Gaussian Elimination (GE). The workflow size for GE algorithm [11] is character-
ized by the input points (M) which is varied from 4 to 32, incrementing by the power of
2. The workflow size for M input points is (M2 + M-2)/2. The average NM obtained for
various input points is shown in Fig. 5a and MST algorithm produced shorter span
schedules in comparison to HEFT, PETS and CPOP algorithms by 6.83 %, 15.69 %
and 19.65 %. Figure 5b depicts the average efficiency with respect to the varied
processor set. MST algorithm has shown superior efficiency than HEFT, PETS and
CPOP algorithms by 8.9 %, 14.44 % and 18.82 % respectively.

Molecular Dynamics Code (MDC). The irregular structure of MDC workflow [12]
motivated to study the effect on the performance of the scheduling algorithms.
Figure 6a plots the average NM values as a function of various DPR values and MST
algorithm generated shorter span schedules compared to HEFT, PETS and CPOP by
3.76 %, 7.63 % and 12.57 %. The average efficiency of the scheduling algorithms is
presented in Fig. 6b for varied processor sets used for experimentation. From Fig. 6b, it
can be manifested that MST algorithm showed better efficiency than HEFT, PETS and
CPOP by 6.64 %, 11.89 % and 18.83 % respectively.

Table 3. A global comparison of scheduling algorithms

MST HEFT PETS CPOP Overall

MST Superior – 49984 55616 61248 79 %
Equivalent 2816 2112 704 2.67 %
Inferior 17600 12672 8448 18.33 %

HEFT Superior 17600 – 44352 68288 56 %
Equivalent 2816 4928 352 4 %
Inferior 49984 21120 1527 40 %

PETS Superior 12672 21120 – 54209 41.67 %
Equivalent 2112 4928 6589 6.45 %
Inferior 55616 44352 9602 51.88 %

CPOP Superior 8448 1527 9602 – 9.27 %
Equivalent 704 352 6589 3.62 %
Inferior 61248 68288 54209 87 %

210 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

6 Conclusions

A new heuristic based global scheduling algorithm namely MST algorithm for work-
flows in HCS is proposed in this paper. Earlier algorithms imposed level-wise con-
straints due to which a free task at higher level has to wait for the entire level of parallel
tasks to complete. MST algorithm eliminates the level constraints and releases the tasks
as they become free, this reduces the EST of free tasks. Therefore, it is proposed that the
dependency constraints must be viewed globally and hence independent of levels.

1.5

2.5

3.5

4.5

5.5

6.5

2 4 8 16 32

A
ve

ra
ge

 N
M

Input Points

MST
HEFT
PETS
CPOP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4 8 12 20

A
ve

ra
ge

 E
ff

ic
ie

nc
y

Number of Processors

MST
HEFT
PETS
CPOP

(a) (b)

Fig. 4. (a) Average NM and (b) Average efficiency comparison for FFT workflows.

0

2000

4000

6000

8000

10000

4 8 16 32

A
ve

ra
ge

 N
M

Input Points

MST
HEFT
PETS
CPOP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

4 8 12 20

A
ve

ra
ge

 E
ff

ic
ie

nc
y

Number of Processors

MST
HEFT
PETS
CPOP

(a) (b)

Fig. 5. (a) Average NM and (b) Average efficiency comparison for GE workflows.

0

1

2

3

4

5

6

0.1 0.5 1 5 10

A
ve

ra
ge

 N
M

DPR

MST
HEFT
PETS
CPOP

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

4 8 12 20

A
ve

ra
ge

 E
ff

ic
ie

nc
y

Number of Processors

MST
HEFT
PETS
CPOP

(a) (b)

Fig. 6. (a) Average NM and (b) Average efficiency comparison for MDC workflow.

Minimal Start Time Heuristics for Scheduling Workflows 211

prashant.anantharaman.gr@dartmouth.edu

The proposed strategy effectively generates the task sequence by identifying the heavily
processing and dependent tasks. This has potentially led the MST approach to generate
shorter span schedules with less complexity of O(t log t +e) p.

Experimentations are conducted on random and real world application workflows
to evaluate the performance of the scheduling algorithms. The performance of MST
algorithm is compared with most cited HEFT, PETS and CPOP algorithms. The
experimental results reveal 5–20 % performance improvement of MST algorithm in
80 % of the cases against HEFT, PETS and CPOP algorithms. Much gain in the
performance of MST algorithm is observed for higher shape parameter values. The
reason behind this is due to maximizing the parallelization of tasks by releasing the free
tasks. Moreover, significant performance improvement of MST algorithm can also be
noticed for higher DPR values and this can be attributed to the fact that MST algorithm
competently handles heavily dependent tasks. As future research work branch and
bound technique can be implemented for accomplishing optimal schedules.

References

1. Arabnejad, H., Barbosa, J.M.: List scheduling algorithm for heterogeneous systems by an
optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694 (2014)

2. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance effective and low complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274
(2002)

3. Gary, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of
NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

4. Illavarasan, E., Thambidurai, P.: Low complexity performance effective task scheduling
algorithm for heterogeneous computing environments. J. Comput. Sci. 3(2), 94–103 (2007)

5. Daoud, M.I., Kharma, N.: A high performance algorithm for static task scheduling in
heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 68, 399–409
(2008)

6. Falzon, G., Li, M.: Enhancing list scheduling heuristics for dependent job scheduling in grid
computing environments. J. Super Comput. 59(1), 104–130 (2012)

7. Kruatrachue, B., Lewis, T.: Grain size determination for parallel processing. IEEE Softw. 5
(1), 23–32 (1988)

8. Xu, Y., Li, K., He, L., Truong, T.K.: A DAG scheduling scheme on heterogeneous
computing systems using double molecular structure-based chemical reaction optimization.
J. Parallel Distrib. Comput. 73, 1306–1322 (2013)

9. Khan, M.A.: Scheduling for heterogeneous systems using constrained critical paths.
J. Parallel Comput. 38, 175–193 (2012)

10. Chung, Y., Ranka, S.: Application and performance analysis of a compile time optimization
approach for list scheduling algorithms on distributed memory multiprocessors. In: Super
Computing, pp. 512–52 (1992)

11. Wu, M., Dajski, D.: Hypertool: a programming aid for message passing system. IEEE Trans.
Parallel Distrib. Syst. 1(3), 951–967 (1994)

12. Kim, S.J., Browne, J.C.: A general approach to mapping of parallel computation upon
multiprocessor architectures. In: International Conference on Parallel Processing, pp. 1–8.
Pennsylvania State University, University Park (1988)

212 D. Sirisha and G. VijayaKumari

prashant.anantharaman.gr@dartmouth.edu

FC-LID: File Classifier Based Linear Indexing
for Deduplication in Cloud Backup Services

P. Neelaveni(&) and M. Vijayalakshmi

Department of Information Science and Technology,
Anna University, Chennai, Tamilnadu, India

srirang.neels@gmail.com, vijim@annauniv.edu

Abstract. Data deduplication techniques are optimal solutions for reducing
both bandwidth and storage space requirements for cloud backup services in
data centers. During deduplication process, maintaining an index in RAM is a
fundamental operation. Very large index needs more storage space. It is hard to
put such a large index totally in RAM and accessing large disk also decreases
throughput. To overcome this problem, index system is developed based on File
classifier based Linear Indexing Deduplication called FC-LID which utilizes
Linear Hashing with Representative Group (LHRG). The proposed Linear Index
structure reduces deduplication computational overhead and increases dedupli-
cation efficiency.

Keywords: Deduplication � Cloud backup service � Linear hashing with
representative group � File classifier

1 Introduction

Cloud computing consists of both applications and hardware delivered to users as
services via the Internet. Cloud storage refers to a storage device accessed over the
Internet via Web service application program interfaces (API) [1]. Cloud backup [2]
stores data located at the client side into the cloud storage service provider through
network so as to recover data in time [3]. Deduplication is an effective technique to
optimally utilize the storage space in cloud backup services. Data deduplication method
is an optimized technique for reducing both bandwidth and storage space requirements
for cloud backup services in data centres.

Data deduplication technology identifies duplicate data, eliminate redundancy and
reduce the need to transfer or store the data in the overall capacity [4]. Data dedu-
plication can greatly reduce the amount of data, thereby reducing energy consumption
and reduce network bandwidth in cloud data centres.

In the deduplication process, duplicate data is determined and only one copy of the
data is stored, along with references to the unique copy of data thus redundant data is
removed [5]. The most common deduplication technique partitions data into chunks of
non-overlapping data blocks [6]. It calculates a fingerprint for each chunk using a
cryptographic hash function (e.g. SHA-1) and stores the fingerprint of each chunk in a
hash table (chunk index). Each chunk stored on the storage system has a unique
fingerprint in the chunk index. To determine whether a chunk is already stored on the

© Springer International Publishing Switzerland 2016
N. Bjørner et al. (Eds.): ICDCIT 2016, LNCS 9581, pp. 213–222, 2016.
DOI: 10.1007/978-3-319-28034-9_28

prashant.anantharaman.gr@dartmouth.edu

system or not, the fingerprint of the incoming data item is first looked up in the chunk
index and if there is a match, the system only stores a reference to the existing data.
Otherwise the incoming chunk is considered unique and is stored on the system and its
fingerprint inserted in the chunk index.

Data deduplication strategies [7] are basically classified into three types: (1) based
on data unit (2) location where deduplication can be performed and (3) based on disk
placement. The core of deduplication is the index store and index lookup mechanism
and therefore, optimizing throughput at this critical path is vital for the performance of
the whole cloud backup service. The main challenges to be considered in cloud back up
services when deduplication is applied are high throughput, computational overhead,
deduplication efficiency [2].

To find a duplicate chunk quickly, it is necessary to maintain an index of chunk
IDs in RAM. A chunk ID is a signature of a chunk, which is usually computed by a
cryptographic hash such as SHA-1 or MD5. When two chunk IDs are identical, the two
corresponding chunks are duplicate. When the data size is not very large, it is easy to
put the flat chunk index in RAM. Generally, the ratio of the size of the flat chunk index
to the deduplicated data [8] consisting of unique chunks is about 1:100. It is hard to put
such a huge index totally in RAM. Part of the index must be put in disk and is loaded to
RAM when needed. Then, for searching every chunk in the index, part of the index
should be loaded from disk to RAM, resulting in extremely low throughput.

We propose a novel File classifier based Linear Indexing Deduplication (FC-LID)
method which eliminates the maintenance of index in RAM and thus reduces almost all
RAM usage requirement to place an index. We only maintain 3 type of containers in
disk, which mainly consists of number of chunk IDs for every type of a file called MFC
(Most Frequently Changeable) files, LFC (Least Frequently Changeable) files and NC
(Not Changeable) files and its corresponding containers. We designed variation of
Linear Hashing called Linear Hashing with Representative Group (LHRG) to organize
container and to compute the container address for a file. The proposed model is tested
using university students datasets. Experimental results shows that our method elimi-
nates the need of an index in RAM and the deduplication rate of our method is better
than EB for the considered datasets.

The proposed deduplication system, which exploits file type attribute and File
classifier based Linear indexing deduplication structure called FC-LID is used to
reduces the RAM usage which in turn reduces deduplication computational overhead.
The Index Structure used in the proposed deduplication method has effective impact in
deduplication efficiency. The rest of the paper is organized as follows. Section 2
presents related work. The system design is in Sect. 3. Implementation details are given
in Sect. 4. Section 5 evaluated FC-LID through experiments driven by real-world
datasets and performance study is given. Section 6 concludes the paper.

2 Related Work

Several methods are proposed to solve issues involved in maintaining large index while
cloud backup handles huge volume of data. To solve this problem, Bloom Filter [8]
utilizes a summary vector to avoid the unnecessary index searches for new chunks, and

214 P. Neelaveni and M. Vijayalakshmi

prashant.anantharaman.gr@dartmouth.edu

utilizes Locality Preserved Caching (LPC) [12] to ensure the descriptors of a duplicate
chunk are highly likely already in the cache. Sparse Indexing [8] utilizes a sparse index
by sampling some chunk IDs to be placed in RAM at an exact rate per data segment.
Both methods are very effective when there is high locality in the data stream. Extreme
Binning (EB) [9] works very well even when there is low locality in the data stream.
EB chooses the minimum chunk ID of all chunk IDs of a file as the representative
chunk ID and places it in the index in RAM and puts all chunk IDs of the files with the
same minimum chunk ID in the same bin in the disk.

All these methods can reduce the RAM usage, but the RAM usage is still too large
[11]. If the average chunk size is 4 KB, for 100 TB of storage space utilization, Bloom
Filter needs about 36 GB RAM while Sparse Indexing needs 17 GB RAM for an
equivalent level of deduplication [3] compared with 1500 GB RAM required by the flat
chunk index of Jumbo Store [10]. For 10 PB of storage space utilization, EB requires
about 1500 GB RAM to hold the index [13, 14]. For a store with dozens of PB of
storage space utilization, all these three methods require more than several TB of RAM
to hold their indexes [15].

3 System Design

The architecture of proposed deduplication system given in Fig. 1 consists of the
following components: File classifier, deduplication layer and storage layer.

3.1 File Classifier

The file type attribute is considered for deduplication process. Some specific files, such
as compressed archives, multimedia files, that are semantically identical may share little
redundant data in their binary presentations.

File stream

File
Classifier

MFC Files

LFC Files

NC Files

Deduplication layer

MFC Index

LFC Index

NC Index

LHRG

Storage layer

Container
Store

Container
Manager

Fig. 1. Architecture of FC-LID

FC-LID: File Classifier Based Linear Indexing for Deduplication 215

prashant.anantharaman.gr@dartmouth.edu

3.1.1 Classification of Files
MFC (Most Frequently Changeable) files: Files of types .txt, odt, .odp and .pdf are
categorized as mutable file. They involve more modification and are most frequently
accessed by the user. As the content of these files may get modified, content based
chunking is used to divide the file to identify the duplicates effectively. LFC (Least
Frequently Changeable) files: Files of types .exe and .rar are less mutable files as they
contain only less modification. Duplicates among these types of files are efficiently
identified by performing fixed size chunking method. NC (Not Changeable) files: Files
of types .avi, .mp3 and .mp4 are categorized as immutable files. As the content of these
types of files is not modified, such file can be compared in its entirety to identify the
duplicates.

3.2 Deduplication Layer

Deduplication layer consist of index for MFC, LFC, NC files. The variation of linear
hashing called LHRG based on file classifier described in the following section have
the potential to reduce the Deduplication computational overhead.

Index for MFC files: There is a huge probability of multiple versions of the files
with minor variations existing across the files of different users or within the files of the
same user. These versions of files are similar files. According to Broder’s theorem, files
f1 and f2 are similar files, if their minimum chunkIDs are the same. Hence, it will be
beneficial to maintain a hierarchical index. The primary index holds the representative
chunkID and the secondary index accommodates the chunk IDs of similar files. Once
the usage of hierarchical index is decided, it is necessary to choose suitable data
structures for the primary and secondary index. B+ tree is a balanced tree from root to
leaf level. A node in B+ tree constitutes a key and a pointer. Order of B + tree
determines the number of representatives. Index for LFC files: The content of this
kind of file is prone to minor modification only. ChunkIDs of these types of files are
organized in a B+ tree to identify the duplicates and improve the retrieval time of the
file. Index for NC files: Contents of these types of files will be the same across the
users. Hence, it is enough to keep only the hashes of the files. Hash table is maintained
to store the chunkIDs of files.

3.2.1 Linear Hashing with Representative Group (LHRG)
Deduplication Process: The key feature of our idea is that we can circumvent a main
index in RAM by utilizing Linear Hashing with Representative Group (LHRG) to
compute the address of container where classified files reside. Index is maintained to
find the container where similar files are placed. When file stream comes into the
deduplication system, the files are classified and processed one by one. A classified file
is first chunked. Then the LHRG address of the classified file is computed. The
deduplication system uses this LHRG address to load the container from the container
store. New chunk IDs are found and inserted into this loaded container. After this, the
old container is deleted and this new container is stored in the container store using the
same LHs address as the old container. Then, new chunks are stored in disk. Finally,

216 P. Neelaveni and M. Vijayalakshmi

prashant.anantharaman.gr@dartmouth.edu

the file manifest of this file including all chunk IDs and other information are stored in
the file manifest store.

When a file is being deduplicated, the address of the container, which this file is
deduplicated against, should be computed. Then, the container with this address is
loaded into memory to be searched for the duplicate chunk IDs. We design a variation
of LH is used for container addressing, namely Linear Hashing with Representative
Group (LHRG). LHRG consists of a group of container or bucket. Each container of
LHRG contains a number of Representative Group which uses a group of keys for
addressing and splitting of bucket. This difference results in a different addressing
strategy of LHRG and a different splitting strategy of LHRG. All chunk IDs of a file
constitutes a representative group of a LHRG container. The representative chunk ID of
a file is the representative key of a group of LHRG. Firstly, we find the minimum
chunk ID of a file as the representative chunk ID. And then, this minimum chunk ID is
used as a LH key to compute a LH address, which is also the LHRG address.
The LHRG address is the LH address of the representative of a group.

LHRG Addressing Algorithm. The LHRG is denoted by L. The initial number of
container is denoted by C (C >= 1), the maximum size of container is specified by S,
the Representative is denoted as R, the split pointer by p, the file level by j + 1 (j = 0, 1,
2 …), the threshold of load factor by f, the addressing hash function by h. The
addressing algorithm of LHRG, used to compute the container address of a Repre-
sentative Group, is shown in Fig. 2.

3.3 Storage Layer

The proposed deduplication method FC-LID decreases the need of an index in RAM.
We only maintain containers in disk, which mainly gives a number of chunk IDs. For
every type of a file MFC, LFC, NC a separate container store is maintained called MFC
container, LFC Container and LC Container. The container which holds the similar
files is loaded from disk to RAM, and the file is deduplicated against this Container.
We designed LHRG to organize container and to compute the container address for a
file. For every type of file such as MFC, LFC and NC, the address of the container
comprising the similar files is computed by the bin addressing algorithm of LHRG.
The LHRG addressing algorithm only needs all chunk IDs of a file as input and output
as the container address for this file. The file is deduplicated using this container after
loading the container and new chunk IDs are inserted into this container. Then new

Input: L, j, p: Output: a
for all chunks
do m = min(L);

n = hi(m);
if n < p then n = hi+ f (m);
end if

Fig. 2. LHRG addressing algorithm

FC-LID: File Classifier Based Linear Indexing for Deduplication 217

prashant.anantharaman.gr@dartmouth.edu

chunks are stored in disk, and then the file metadata containing all information to
reconstruct this file is also stored in disk. Container manager is responsible for storing,
allocating, deallocating, reading, writing containers.

4 Implementation

A private cloud is set using Eucalyptus [16] open source software. The storage space in
private cloud needs to be optimally utilized during cloud back up services Hence,
deduplication technique has been incorporated in this to make this storage as an
optimized one. Eucalyptus [16] consists of five functional components namely Cloud
Controller (CLC), Cluster controller (CC), Storage controller (SC), Walrus and Node
controller (NC). The Storage controller provides block storage services similar to
Amazon’s Elastic Block Service (EBS) [17]. The client can interact with cloud storage
through Walrus via S3 interface or REST based tools similar to Amazon’s Simple
Storage Service (S3) [18]. The Walrus store the data in the installed machine [16]. The
Node controller monitors and reins the hypervisor on each compute node an allows
users to execute fundamental operations on the data. Gluster File System (GFS) is used
to establish set up a storage with many storage servers that use GlusterFS [19]. It gives
permission for a cloud client to accumulate the consolidated storage at a single mount
point [20] and also gives the privilege to the clients user to control the storage and
retrieval of the files [21]. Four machines are configured as CC, SC, CLC and Walrus.
Rest of the machines are configured as Node controllers.

5 Performance Study

5.1 RAM Usage

In the proposed design, memory requirement for index in RAM is not necessary to
decide whether a chunk exists in the deduplication systems. Also index is not required
to determine the similar segment as it is done in Sparse Indexing or the similar file
groups as Extreme Binning does. Instead minimum chunk IDs of 3 categories of file
(MFC, LFC, NC) is used to compute the LHRG address and then the corresponding
containers are loaded with this address. This methodology eliminates the maintenance
of an index in RAM.

5.2 Analysis of FC-LID

Fixed sized chunking method is applied for
files as they are prone to only less modifi-
cation. Hence, it is assumed that chunks
created for these types of files will be less
compared to that of NC files. Due to the
advantages of on-disk B + tree, it is chosen to
hold the chunkIDs of these types of files.

Table 1. Performance analysis of FC-LID

Chunk
entry

Sequential
search (in sec)

FC-LID
(in sec)

100 0.001 0.0
1000 0.172 0.0
10000 0.296 0.0
100000 0.431 0.0
2000000 0.740 0.001
2500000 0.973 0.001

218 P. Neelaveni and M. Vijayalakshmi

prashant.anantharaman.gr@dartmouth.edu

Types of files like .avi, .mp3 and .mp4 involve no modification. Hence, hash for these
types of files are enough to be maintained in index. Linear index and hash table are
implemented to hold the chunkIDs of NC files. In worst case, sequential index is
performed in O(n) time to retrieve a file. Whereas, linear index performs efficiently by
retrieving the file in O(1) time. It is inferred from Table 1.

5.3 Deduplication Computational Overhead

De-duplication overhead, in terms of reduced throughput, is a critically important factor
impacting cloud backup systems performance. The Performance analysis shows that
the retrieval time for MFC, LFC, NC files. We use the retrieval time in deduplication
process for each backup session as a metric to evaluate the deduplication overhead. The
proposed deduplication process at the client site takes less time by singling out
deduplicated files and small files with zero RAM access. Thus our system incurs much
less deduplication overhead.

5.3.1 Analysis of Retrieval Time of MFC Files
When a request arrives to retrieve a file, the
corresponding file recipe is obtained. It is
forwarded to the storage node where the index
for MFC files is maintained. The hierarchical
index with on-disk B+ tree with linear hash
table is implemented to hold reasonably large
number of chunkID entries. The minimum and
maximum size of the stored file is 10 KB and
1 MB respectively. Table 2 shows the time
taken to retrieve a file of type MFC with
various sizes.

5.3.2 Analysis of Retrieval Time of LFC Files
Types of files .exe, and .rar are divided into
fixed size of 8 KB and the chunkIDs are
computed for those chunks. The minimum and
maximum size of file that will be stored in
OPCS are assumed to be 10 KB and 1 MB
respectively. Table 3 shows the time taken to
retrieve a file of type .rar with various file
sizes.

Table 2. Retrieval time of MFC files

File size No of chunks Retrieval time
(in sec)

10 KB 5 0.124
50 KB 10 0.313
100 KB 26 0.501
500 KB 112 1.1
1 MB 257 4.2

Table 3. Retrieval time LFC files

File size No of chunks Retrieval time
(in sec)

16 KB 2 0.24
50 KB 7 0.32
100 KB 13 0.50
500 KB 125 1.4
1 MB 248 4.7

FC-LID: File Classifier Based Linear Indexing for Deduplication 219

prashant.anantharaman.gr@dartmouth.edu

5.3.3 Analysis of Retrieval Time of NC Files
Whole file chunking is performed for this file type
and the chunkIDs of these types of files are main-
tained in hash table on-disk and sequential structure.
The minimum size of these types of files are
assumed to be 10 MB and the maximum size to be
1 GB. The time taken to retrieve these types of files
with various sizes is tabulated in Table 4.

5.4 Deduplication Efficiency

Deduplication efficiency is defined as the ratio between the amount of the redundant data
actually removed and the total amount of the redundant data in each deduplication
method. Our experimental results present
both the cumulative deduplication efficiency
in terms deduplication rate of each backup
session for individual users. The results show
that proposed method removes almost all the
redundant data at the chunk level. The
deduplication rate of FC-LID is compared
with that of Extreme Binning (EB). For uni-
versity student dataset, LHRG shows better
deduplication efficiency than EB as shown in
Fig. 3. When MFC, LFC, NC container size
is varying from 1.2 MB to 2.0 MB, the
deduplication rate of FC-LID is 24 % on the
average better than EB. Usually, much more
bigger container size brings much more lar-
ger chance to find duplicate chunks. There-
fore, the deduplication FC-LID is better.

When the container size is large, FC-LID
performs better and the ratio of the dedu-
plication rate is 92.87 % for MFC, 90.78 %
for LFC, and 82.46 % for NC. The reason is that, in chosen dataset, files size is small,
typically from several kilobytes to dozens of kilobytes. Thus, more similar files with
different minimum chunk IDs exist in. At the same time, FC-LID selected the minimum
chunk ID as the representative chunk ID, which means that, there are more similar files
with different minimum chunk Ids are placed in different categories of containers.
Therefore, deduplication efficiency is increased.

Table 4. Retrievaltime of NC
Files

File size Retrieval time
(In sec)

10 MB 57
100 MB 792
250 MB 1447
500 MB 1935
1 GB 3245

Fig. 3. Deduplication efficiency

220 P. Neelaveni and M. Vijayalakshmi

prashant.anantharaman.gr@dartmouth.edu

6 Conclusion

We have designed the FC-LID, File classifier based Linear Indexing for Deduplication
in cloud backup services which eliminates the maintaining an index in RAM and
LHRG is utilized to compute the address of a containers based on MFC, LFC, NC files.
The corresponding containers holds the chunk IDs of similar files to a file. Then,
maintain an index in RAM is not required to perform this operation. Our method
computes the LHRG address for MFC, LFC, NC file, loads the container with this
address, and deduplicates the file against the categorized container. Experimental
results show that the deduplication efficiency is increased and reduces deduplication
computational overhead. As a future work, we plan to design file classifier based
probabilistic model using locality sensitive hashing for deduplication in cloud backup
services.

References

1. Sun, Z., Shen, J., Yong, J.: DeDu: building a deduplication storage system over cloud
computing. In: 15th IEEE International Conference on Computer Supported Cooperative
Work in Design (2011)

2. Yinjin, F., et al.: AA-Dedupe: an application-aware source deduplication approach for cloud
backup services in the personal computing environment. In: IEEE International Conference
on Cluster Computing, pp. 112–120 (2011)

3. Zhonglin, H., Yuhua, H.: A study on cloud backup technology and its development. In:
International Conference, ICCIC 2011, pp 1–7. Wuhan, China, 17–18 September 2011

4. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication
file system. In: Proceedings of the 6th Conference on USENIX Conference on File and
Storage Technologies, San Jose, CA, USA, pp. 269–282. USENIX Association, Berkeley,
CA, USA, 26–29, 2008

5. Neelaveni, P., Vijayalakshmi, M.: A survey on deduplication in cloud storage. Asian J. Inf.
Technol. 13, 320–330 (2014)

6. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. In: FAST 2011: Proceedings
of the 9th Conference on File and Storage Technologies (2011)

7. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: deduplication in
cloud storage. IEEE Secur. Priv. 8(6), 40–47 (2010)

8. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.: Sparse
indexing: large scale, inline deduplication using sampling and locality. In: Proceedings of
the 7th Conference on USENIX Conference on File and Storage Technologies, San
Francisco, CA, USA, pp. 111–123. USENIX Association, Berkeley, CA, USA, 24–27, 2009

9. Bhagwat, D., Eshghi, K., Long, D., Lillibridge, M.: Extreme binning: scalable, parallel
deduplication for chunk-based file backup. In: Proceedings of the 17th Annual Meeting of
the IEEEIACM International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems, London, UK, pp. 1–9. IEEE Computer Society,
Washington, DC, USA, 21–23, 2014

FC-LID: File Classifier Based Linear Indexing for Deduplication 221

prashant.anantharaman.gr@dartmouth.edu

10. Eshghi, K., Lillibridge, M., Wilcock, L., Belrose, G., Hawkes, R.: Jumbo store: providing
efficient incremental upload and versioning for a utility rendering service. In: Proceedings of
the 5th Conference on USENIX Conference on File and Storage Technologies, San Jose,
CA, USA, pp. 123–138. USENIX Association, Berkeley, CA, USA, 13–16, 2007

11. Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., Shilane, P.: Tradeoffs in scalable
data routing for deduplication clusters. In: Proceedings of the 9th Conference on USENIX
Conference on File and Storage Technologies, San Jose, CA, USA, pp. 15–29. USENIX
Association, Berkeley, CA USA, 15–17, 2011

12. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, Draft by The National
Institute of Standards and Technology (NIST). United States Department of Commerce
Version 15 (2009)

13. Tan, Y., Jiang, H., Sha, E.H.-M., Yan, Z., Feng, D.: SAFE: a source deduplication
framework for efficient cloud backup services. J. Sign Process Syst. 72, 209–228 (2013).
Springer Science, Business Media, New York

14. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the data domain deduplication
file system. In: Proceedings of the 6th USENIX Conference on File and Storage
Technologies, FAST 2008, pp. 18:1–18:14. USENIX Association, Berkeley, CA, USA

15. Wei, J., Jiang, H., Zhou, K., Feng, D.: Mad2: a scalable high-throughput exact deduplication
approach for network backup services. In: IEEE NASA Goddard Conference on Mass
Storage Systems and Technologies, pp. 1–14 (2010)

16. http://open.eucalyptus.com/wiki/EucalyptusInstall_v2.0
17. Amazon’s Elastic Block Storage. Elastic Block Storage. http://aws.amazon.com/ebs/
18. Amazon’s Simple Storage Service. Simple Storage Service. http://aws.amazon.com/s3/
19. Gluster file system. http://www.gluster.org
20. http://gluster.com/community/documentation/index.php/MainPag
21. http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracting_v.0

222 P. Neelaveni and M. Vijayalakshmi

prashant.anantharaman.gr@dartmouth.edu

http://open.eucalyptus.com/wiki/EucalyptusInstall_v2.0
http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/
http://www.gluster.org
http://gluster.com/community/documentation/index.php/MainPag
http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracting_v.0

Author Index

Adeeb, Maaz Syed 193
Aggarwal, Pooja 43
Agmon Ben-Yehuda, Orna 10
Ahmad, Syed Jalal 122
Anantharaman, Prashant 169
Arumugam, Padmapriya 148
Awal, Md. Rabiul 97

Bandita, Sahu 137
Bhatt, Gaurav 113
Bhavani, S. Durga 56
Bin Tengku Sembok, Tengku Mohd 97

Chandrakanth, S. 33
Chaturvedi, Pooja 188
Chor, Benny 3
Choubey, Siddharth Dutt 127

Damodaram, A. 122
Dang, Duc-Hanh 157
Daniel, A.K. 188
Dheenadayalan, Kumar 75

Gangrade, Kopal 127
Gayatri, Kartik S. 193
Goel, Seep 43
Gore, Alpa 127
Gupta, Bhumika 113

Jana, Prasanta K. 61
Jannu, Nikhil N. 193
Jayalakshmi, D.S. 182
Jena, Sanjay Kumar 175
Jyothsna, Kanithi 38

Kingsy Grace, R. 132

Laxmi, Pikkala Vijaya 38

Mallesham, Jatharakonda 56
Manimegalai, R. 132
Mittal, Ankush 113
Miura, Yasuyuki 97

Mohd Nor, Rizal 97
Movsowitz, Danielle 10
Mukherjee, Saswati 169
Muralidhara, V.N. 75

Narayanasamy, Kanagaraj 148
Neelaveni, P. 213

Pabitra Mohan, Khilar 137
Panda, Sanjaya K. 61
Panigrahi, Suvasini 87
Priyadarshini, Sushree Bibhuprada B. 87

Radha Krishna, P. 122
Rahman, M.M. Hafizur 97
Ramakrishnan, Geethapriya 169
Ramaswamy, Srinivasan 182
Rashmi Ranjana, T.P. 182
Rathore, Nemi Chandra 142
Reddy, V.S.K. 122
Roul, Rajendra Kumar 103
Rushby, John 19

Sahay, Sanjay Kumar 103
Sahu, Santosh Kumar 175
Saini, Anu 92
Sarangi, Smruti R. 43
Schuster, Assaf 10
Shaw, Prashant 142
Sirisha, D. 199
Srinivasa, K.G. 193
Srinivasaraghavan, Gopalakrishnan 75

Thilagam, P. Santhi 33
Tripathy, Somanath 142
Truong, Anh-Hoang 157

Van Hung, Dang 157
VijayaKumari, G. 199
Vijayalakshmi, M. 213
Vu, Xuan-Tung 157

Zaritsky, Assaf 3

prashant.anantharaman.gr@dartmouth.edu

	Preface
	Organization
	Invited Talks
	Teaching Computer Science in the Community
	Attacks in the Resource-as-a-Service (RaaS)Cloud Context
	Static and Dynamic Reasoning for SDNs
	Trustworthy Self-Integrating Systems
	The Design of EasyChair (Abstract)

	Contents
	Invited Talks
	Teaching Computer Science in the Community
	1 Background
	2 Activities Content
	2.1 Computer Science Unplugged
	2.2 Preparing New Activities
	2.3 Introductory Programming
	2.4 Visits to High-Tech Companies

	3 Graduation Ceremony
	4 Course Administration
	5 Concluding Remarks
	References

	Attacks in the Resource-as-a-Service (RaaS) Cloud Context
	1 Introduction
	2 Allocating RAM Using an Auction
	3 Attacks on Traditional Clouds
	3.1 Classifying Attack Types
	3.2 Mapping the Internal System Infrastructure and Determining Levels of Isolation
	3.3 Detecting and Limiting Attacks

	4 Conclusion
	References

	Trustworthy Self-Integrating Systems
	1 Introduction
	2 Scenarios
	3 Recent Work
	4 Prospects
	5 Conclusion
	References

	Contributed Papers
	HiRE - A Heuristic Approach for User Generated Record Extraction
	1 Introduction
	2 Related Works
	3 Proposed Method a Heuristic Algorithm for Record Extraction (HiRE)
	4 Discussion on Results
	5 Conclusion
	References

	Optimization of Service Rate in a Discrete-Time Impatient Customer Queue Using Particle Swarm Optimization
	1 Introduction
	2 Model Description and Analysis
	3 Performance Measures and Cost Model
	References

	A Wait-Free Stack
	1 Introduction
	2 Related Work
	3 The Algorithm
	3.1 Basic Data Structures
	3.2 High Level Overview
	3.3 The Push Operation
	3.4 The Pop Operation
	3.5 The CleanUp Operation

	4 Proof of Correctness
	5 Conclusion
	References

	Influential Degree Heuristic for RankedReplace Algorithm in Social Networks
	1 Introduction
	1.1 Problem Definition

	2 Related Work
	3 Proposed Approach: Modified RankedReplace Algorithm
	3.1 Influential Degree (ID) and Influential Degree Discount (IDD) Heuristics

	4 Experimentation and Results
	4.1 Data Sets

	5 Conclusion
	References

	An Efficient Task Consolidation Algorithm for Cloud Computing Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Models and Problem Statement
	3.1 Cloud and Energy Models
	3.2 Task Consolidation Problem

	4 Proposed Algorithm
	4.1 Multi-criteria Based Task Consolidation
	4.2 Algorithm Description
	4.3 An Illustration

	5 Simulation Results
	5.1 Simulation Setups and Datasets
	5.2 Results and Discussion

	6 Conclusion
	References

	Storage Load Control Through Meta-Scheduler Using Predictive Analytics
	1 Introduction
	2 Literature Survey
	3 Storage Load Controller
	4 Modeling and Implementation
	4.1 Data Extractor
	4.2 Response Forecaster
	4.3 Job State Handler

	5 Results
	6 Conclusion
	References

	A Distributed Approach Based on Maximal Far-Flung Scalar Premier Selection for Camera Actuation
	Abstract
	1 Introduction
	2 Problem Analysis and Proposed Approach
	3 Implementation and Performance Evaluation
	4 Conclusions
	References

	An Extension to UDDI for the Discovery of User Driven Web Services
	Abstract
	1 Introduction
	2 Review of Related Research
	3 Proposed System Architecture for User Driven Web Service Registry and Discovery
	3.1 E-UDDI Data Model
	3.2 Service Publishing and Discovery
	3.2.1 Service Publishing Phase
	3.2.2 Service Discovery Phase

	4 Conclusion
	References

	Long Wire Length of Midimew-Connected Mesh Network
	1 Introduction
	2 Architecture of the MMN
	3 Long Wire Length Evaluation
	4 Conclusion
	References

	K-means and Wordnet Based Feature Selection Combined with Extreme Learning Machines for Text Classification
	1 Introduction
	2 Background
	2.1 Extreme Learning Machine
	2.2 Multi-layer ELM
	2.3 Bi-Normal Separation (BNS)

	3 Proposed Approach
	4 Experimental Results
	5 Conclusion
	References

	Language Identification and Disambiguation in Indian Mixed-Script
	Abstract
	1 Introduction
	2 Our Contribution
	3 Technique Used
	3.1 Language Identification
	3.2 Disambiguation

	4 Experiment and Results
	5 Conclusion and Future Work
	References

	A Dynamic Priority Based Scheduling Scheme for Multimedia Streaming Over MANETs to Improve QoS
	Abstract
	1 Introduction
	2 PBMM Scheme
	3 Results and Discussion
	4 Conclusion
	References

	Improved Bug Localization Technique Using Hybrid Information Retrieval Model
	Abstract
	1 Introduction
	2 Architecture of Hybrid Model
	2.1 Overview of Proposed Approach

	3 Experimental Result
	4 Conclusion and Future Work
	References

	HGASA: An Efficient Hybrid Technique for Optimizing Data Access in Dynamic Data Grid
	Abstract
	1 Introduction
	2 Related Work
	3 HGASA: Hybrid of Genetic Algorithm and Simulated Annealing for Replica Selection
	4 Experimental Results
	5 Conclusion
	References

	Energy Efficient SNR Based Clustering in Underwater Sensor Network with Data Encryption
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	4 Simulation and Results
	5 Conclusion
	References

	Collaborative Access Control Mechanism for Online Social Networks
	1 Introduction
	2 System Model and the Proposed Mechanism
	2.1 System Model
	2.2 Collaborative Access Control Mechanism (CACM)

	3 Implementation and Evaluation
	3.1 Survey and Results

	4 Conclusion and Future Work
	References

	i-TSS: An Image Encryption Algorithm Based on Transposition, Shuffling and Substitution Using Random ...
	Abstract
	1 Introduction
	2 Proposed Algorithm
	2.1 Transposition Process
	2.2 Shuffling and Substitution Processes

	3 Experimental Study
	3.1 Encryption and Decryption Processes
	3.2 Execution Time

	4 Results and Discussion
	4.1 Histogram
	4.2 PSNR and MSE
	4.3 NPCR and UACI
	4.4 Entropy Measure

	5 Conclusion
	References

	A Type System for Counting Logs of Multi-threaded Nested Transactional Programs
	1 Introduction
	2 Motivating Example
	3 The Language TFJ
	4 Type System
	5 Correctness
	6 Type Inference
	7 Conclusion
	References

	Proactive Resource Provisioning Model for Cloud Federation
	1 Introduction
	2 Literature Survey
	3 Proactive Resource Provisioning in Cloud Federation
	3.1 Resource Allocator
	3.2 Load Balancer
	3.3 Workload Predictor

	4 Experiment and Analysis
	4.1 Evaluation of Prediction Algorithms
	4.2 Evaluation of Proactive Cloud Federation Mechanism

	5 Conclusion
	References

	A Multiclass SVM Classification Approach for Intrusion Detection
	1 Introduction
	1.1 Support Vector Machine
	1.2 Multiclass Support Vector Machine
	1.3 Intrusion Dataset
	1.4 Motivation and Objective

	2 Related Work
	3 Result and Discussion
	4 Comparison
	5 Conclusion
	References

	Dynamic Data Replication Across Geo-Distributed Cloud Data Centres
	Abstract
	1 Introduction
	2 System Model
	3 Simulation and Results
	3.1 Result Analysis

	4 Conclusions
	References

	Trust Based Target Coverage Protocol for Wireless Sensor Networks Using Fuzzy Logic
	Abstract
	1 Introduction
	2 Proposed Node Scheduling Protocol
	3 Experimental Results
	4 Conclusion
	References

	An Internet of Things Based Software Framework to Handle Medical Emergencies
	1 Introduction
	2 Architecture
	2.1 Data Collection
	2.2 REST Services
	2.3 Data Storage and Analysis
	2.4 Client Applications

	3 Application
	3.1 Autism
	3.2 Existing Solutions
	3.3 Hardware
	3.4 Analysis
	3.5 Client Application
	3.6 Overall View of Solution
	3.7 Results
	3.8 Conclusion and Future Scope

	References

	Minimal Start Time Heuristics for Scheduling Workflows in Heterogeneous Computing Systems
	Abstract
	1 Introduction
	2 Workflow Scheduling Problem
	2.1 Workflow Model
	2.2 The HCS Model

	3 Related Work
	4 The Proposed MST Algorithm
	4.1 Task Sequencing Stage
	4.2 Task-to-Processor Mapping Stage
	4.3 The MST Algorithm
	4.4 The Complexity Analysis of MST Algorithm

	5 Performance Analysis
	5.1 Randomly Generated Workflows
	5.2 Performance Analysis on Random Workflows
	5.3 Performance Analysis on Real World Application Workflows

	6 Conclusions
	References

	FC-LID: File Classifier Based Linear Indexing for Deduplication in Cloud Backup Services
	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 File Classifier
	3.1.1 Classification of Files

	3.2 Deduplication Layer
	3.2.1 Linear Hashing with Representative Group (LHRG)

	3.3 Storage Layer

	4 Implementation
	5 Performance Study
	5.1 RAM Usage
	5.2 Analysis of FC-LID
	5.3 Deduplication Computational Overhead
	5.3.1 Analysis of Retrieval Time of MFC Files
	5.3.2 Analysis of Retrieval Time of LFC Files
	5.3.3 Analysis of Retrieval Time of NC Files

	5.4 Deduplication Efficiency

	6 Conclusion
	References

	Author Index

