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ABSTRACT

The proliferation of Internet-of-Things (IoT) devices within homes

raises many security and privacy concerns. Recent headlines high-

light the lack of effective security mechanisms in IoT devices. Secu-

rity threats in IoT arise not only from vulnerabilities in individual

devices but also from the composition of devices in unanticipated

ways and the ability of devices to interact through both cyber

and physical channels. Existing approaches provide methods for

monitoring cyber interactions between devices but fail to consider

possible physical interactions. To overcome this challenge, it is

essential that security assessments of IoT networks take a holistic

view of the network and treat it as a łsystem of systemsž, in which

security is defined, not solely by the individual systems, but also

by the interactions and trust dependencies between systems.

In this paper, we propose a way of modeling cyber and physical

interactions between IoT devices of a given network. By verifying
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the cyber and physical interactions against user-defined policies,

our model can identify unexpected chains of events that may be

harmful. It can also be applied to determine the impact of the

addition (or removal) of a device into an existing network with

respect to dangerous device interactions.

We demonstrate the viability of our approach by instantiating

our model using Alloy, a language and tool for relational models.

In our evaluation, we considered three realistic IoT use cases and

demonstrate that our model is capable of identifying potentially

dangerous device interactions. We also measure the performance

of our approach with respect to the CPU runtime and memory con-

sumption of the Alloy model finder, and show that it is acceptable

for smart-home IoT networks.

1 INTRODUCTION

The ease of adoption, quick setup, and autonomy makes it easy

for the layman to integrate IoT devices into their everyday life; a

smart personal assistant, that can interact with a variety of devices

including smart light bulbs, smart outlets, and smart watches, can

be installed in a matter of minutes. However, the characteristics that

make IoT so powerful and useful (i.e., interoperability, autonomy,

and their cyber-physical nature) also introduce security and privacy

concerns. In recent years, cybersecurity researchers have warned

about the implications and risks of the Internet-of-Things (IoT) [1,

6, 11, 17, 25].

Device autonomy eliminates the need for extensive user configu-

ration. Interoperability enables devices to impact each other directly,

https://doi.org/10.1145/3140241.3140252


via network communications, or indirectly, through the physical en-

vironment. These characteristics in combination with the complex

and ad hoc nature of the device interactions can lead to surpris-

ing behaviors that defy expectations. For example, a Honeywell

cyber-security researcher recently demonstrated how a seemingly

innocent command to a valve of a industrial pump system can indi-

rectly, through air bubbles, cause a sensor to decrease the efficiency

of the pump and ultimately stop it.1 This risk is aggravated by the

dynamic nature of IoT systems and their ability to impact the phys-

ical environment. Over time, users introduce (and remove) devices

into their IoT networks with no way of determining the impact

on the security and privacy of such changes. The introduction of

a new device in an existing network can provide a new window

of opportunities for third parties to abuse and attack the users,

elicit sensitive information, disrupt assets [1], or directly impact

the physical world.

Our team of researchers studies the idiosyncrasies of IoT and the

devices that comprise it. We recognize that the cyber and physical

natures of these devices cannot be separated. Consequently, we

argue that tools for security assessment in IoT systems should be

able to explicitly express the interactions between heterogeneous

devices and account for physical interactions because they:

• Can create additional attack vectors;

• Are independent of cyber interactions among devices (e.g.,

Wi-Fi or a TCP connection), the usual focus of network

security assessments;

• Are difficult to detect;

• Are difficult to harden.

To capture these dynamics, we believe a model should follow

a łpessimistic assumptionž (that yet proves to capture realistic

attacks, cf. Section 5), where device interactions are defined by

the (hardware) capabilities of the devices and are not limited by

the software stack driving the devices and their interactions. In

other words, for a particular device with a light sensor, HVAC

controlling capabilities, and a Bluetooth radio, we consider the

possibility for the light sensor to trigger the HVAC controls even

if the software of the device does not define such behavior. This

pessimistic perspective enables us to reason about attackers of

various capabilities and consider worst-case scenarios.

To validate our approach, we built a prototype system using

Alloy [9], a state-of-the-art model analyzer, that instantiates our

łpessimistic assumptionž model. We consider three use cases to

evaluate our approach and demonstrate how it can foresee and

warn against realistic attacks while offering valuable insight on

what enabled the attacks in the first place.

The main contributions of our research are as follows:

(1) A way of modeling cyber and physical relations between

devices in an IoT network;

(2) A way of revealing potential attack paths from both cyber

and physical interactions within a given network;

(3) A way of enumerating the prerequisites, including device

states, that make a particular attack path possible.

1https://www.wired.com/story/evil-bubbles-industrial-pump-hack/

2 BACKGROUND AND RELATED WORK

2.1 Internet-of-Things

While IoT devices are similar in nature to cyber-physical systems,

some characteristics are unique to this class of devices.

Software Components. Interactions between devices can change

often and are driven by software external to the devices. For ex-

ample, in the Samsung SmartThings environment, the interactions

between devices are defined by the SmartApps. These applications

can be added and removed by users over time. The addition (or

removal) of new devices can also introduce changes in the interac-

tions between devices.

Channel Projection. The closely intertwined software and hard-

ware grant IoT systems a unique ability to seamlessly project from

the physical world to the cyber world. A device, such as a smart

thermostat, can receive commands from a smartphone, which can

trigger actions that impact the physical environment (e.g., turn the

AC on).

Ad hoc Interoperability. IoT devices can affect each other in ad-

hoc ways, and can be configured in unforeseen setups. Interoper-

ability implies that the security of a device is defined by its peers

and the interactions between devices. For example, when a smart

electric plug is installed in series with a SmartThings hub, even

if the SmartThings hub is properly secured, its behavior can be

influenced by the insecure smart plug. More concisely, vulnerabili-

ties can be introduced by composition of devices, regardless of the

security of each individual device.

2.2 The Alloy Analyzer

To capture the complicated interactions between devices, we pro-

pose a way of modeling and an implementation using Alloy [9].

Alloy is a simple, expressive language for describing complex struc-

tures. Paired with a model checker, Alloy can be used to model

various systems and verify properties of the model. Alloy has been

previously used to model łall the possible security configurations

of a web application, or all the possible topologies of a switching

networkž. 2

We choose Alloy due to its balance of expressiveness and ease of

usemaking it an ideal candidate for describing the capabilities of IoT

devices and the complexity of their interactions. One of the goals

of this work is to search all possible combinations of interactions

and find a counterexample, if one exists, for a particular property,

a feature support by the Alloy analyzer.

The Alloy analyzer works by reduction to SAT (an NP-complete

problem). While scaling to large input sets is generally challenging

for a satisfiability solver, the scope of our application is limited to

smart home environments, comprised of a finite set of a few dozen

devices, which along with careful modeling enables reasonable

performance time (see Section 5.4). Although a complete Alloy

tutorial 3 is beyond the scope of this paper, we recall below features

that are critical to our work.

2Entire text can be found at http://alloy.mit.edu/alloy/.
3We refer the interested reader to Alloy official tutorial: http://alloy.mit.edu/alloy/
tutorials/online/.
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http://alloy.mit.edu/alloy/
http://alloy.mit.edu/alloy/tutorials/online/
http://alloy.mit.edu/alloy/tutorials/online/


Signatures. In Alloy, an entity can be abstract or concrete, which

enables inheritance-like abilities. For example, consider the follow-

ing snippet of an entity definition, Device, which can be either

Actuator or Sensor. This simple example highlights the subtle but

expressive power of Alloy.

abstract sig Device {}

sig Sensor extends Device {}

sig Actuator extends Device {}

Facts. Facts are universal truths about how things operate in the

universe we describe. For example, the following statement indi-

cates that devices can either be ON or OFF. The use of implications

guarantees that it is not possible for a device to be simultaneously

ON and OFF. It is also possible to define symmetric relationships,

as shown with the definition of adjacency. This means that if lo-

cation A is adjacent to location B, then location B is adjacent to

location A.

fact noQuantumStates{

all d : Device ,s : State | ON ->d in s.on/off iff OFF ->d not in s.on

֒→ /off

all d : Device ,s : State | OFF ->d in s.on/off iff ON ->d not in s.on

֒→ /off

}

fact adjacency{

adjacent=~adjacent

}

Assertions. If facts can be seen as axioms that are always true,

then assertions can be thought of as theorems that should be prov-

ably true based on the supplied facts and the provided inputs. If an

assertion is not true, the model checker searches for counterexam-

ples. Alloy enables users to define assertions of various complexity,

from simple sanity/policy checks to more complicated logic scenar-

ios that could reveal an attack. The following code snippet shows a

simple assertion that checks whether devices with no authentica-

tion capabilities are in publicly accessible areas:

assert noPublicAccess{

no r : Location ,d : r.devices ,channel : d.channel | r.access=Public ∧

֒→ (some d.authentication & channel ->NoAuth)

}

Predicate. Predicates are statements that, like assertions, are ver-

ified given the facts and inputs provided. In contrast to assertions,

predicates provide a possible solution as derived from the model.

The following predicate example produces a network graph based

on the inputs and facts defined in our model:

pred ShowNetwork {}

Figure 3a shows a possible outcome from this predicate.

2.3 Security in IoT

Modeling systems and their behavior has been extensively stud-

ied. Researchers have demonstrated the use of languages [23] to

describe systems and how such descriptions can be leveraged to

formally verify (security) properties of the systems.

Significant work has also been done in threat modeling. Threat

modeling aims to analyze the security of a system and identify

potential threats by approaching the problem from the perspective

of a hypothetical attacker. A popular method for threat modeling is

by leveraging attack trees [20]. Attack trees represent attacks and

countermeasures as a tree structure, where the root node represents

the goal of the attack and the rest of the nodes denote attacker

moves. Other efforts leverage attack graphs to evaluate the security

of various systems [12, 16, 24], while others study methods for

automatically generating them [18, 21].

More recently, researchers have begun applying some of the pre-

viously mentioned methods to cyber-physical systems and specifi-

cally IoT systems. Kovatsch et al. [10] proposed a technique to build

a web-like mesh of IoT devices by composing the representational

state transfer (REST) based APIs of various IoT devices using a

rule-based reasoning engine. In their work, the authors found that

their model led to a state-space explosion for large networks. Unlike

previous work [10] that focused only on the application layer, we

use a satisfiability-based approach and look at the protocols from

both the data-link as well as the application layer. Mohsin et al. [15]

proposed IoTSAT, a formal framework for the security analysis of

IoT networks. They also follow a satisfiability-based approach to

model and analyze security. These papers, however, make different

assumptions in their respective models. First, IoTSAT assumes that

an attack on actuators can affect sensors only through the sensors’

observations of the environment [15, Figure 3]. We do not make

such assumptions (i.e., interactions of only type and direction: Sen-

sors → Controllers → Actuators), thus accounting for arbitrary

ways in which actuators can affect sensors (or any other types of

devices). This allows our model to detect attacks undetectable in

IoTSAT, such as the one described in Section 5.1. Additionally, we

do consider controllers and actuators as potential starting points of

attacks and do not assume them to be adequately hardened.

An event condition action (ECA) language-based approach was

used by Guilly et al. [7] to extend ECA using timed automata by ap-

plying it to arrest faults and unsafe conditions in a home automation

system. Corno and Sanaullah [3] proposed a design-time modeling

and formal verification methodology for smart environments us-

ing ontologies and state charts. Augusto and Hornos [2] presented

a methodological guide on use of linear temporal logic (LTL) to

model, simulate, and verify intelligent environments. Coronato and

Pietro [4] propose guidelines for requirement specifications and

verification through extensions to ambient calculus and ambient

logic. All of these research efforts are focused on verifying the in-

herent and non-malicious behavior of specific systems and lack

generality and security analysis against different attack vectors on

such environments that distinguish the proposed method.

Non-formal techniques have also been applied to evaluate and

enforce the security and privacy of IoT systems. IoT Sentinel [14]

is a system that uses software-defined networks to restrict the com-

munications of devices according to a set of predefined policies.

Both IoT Sentinel and our work perform network traffic analysis to

automatically identify devices on a given IoT network. Our work,

however, aims to determine potential attack paths while IoT Sen-

tinel focuses onmitigation and isolation techniques. Mavropoulos et

al. [13] developed a tool named ASTo which uses a domain-specific

modeling language to generate a visualization of IoT systems, which

facilitates security analysis during the design and implementation

phases. Rullo et al. [19] applied a game-theoretic approach to IoT

security modeling to allow a defender to efficiently allocate re-

sources to protect an IoT system. Some limitations of their work

are abstracting away the heterogeneity of IoT system and lacking

system-level evaluation. Tekeoglu et al. [22] proposed a testbed for



the evaluating the security and privacy of IoT systems by analyzing

layer 2 and 3 packets. Although our work also analyzes network

traffic, we go beyond observed network traffic to draw conclusions

about the security and privacy of an IoT system. Geneiatakis et

al. [5] studied the interactions between devices in a real smart-home

test-bed and used the information to make inferences about general

IoT security and privacy flaws, while considering both internal and

external attackers with varying capabilities. While the output is

similar, our approach does not involve manual analysis or specula-

tion. Our approach automatically verifies security properties of an

IoT system automatically through model checking.

3 SYSTEM MODEL AND DESIGN

Our research focuses on the interactions between devices in an IoT

network. Typical assessments of system interactions consider only

network connections established by wired or wireless channels;

however, both cyber and physical aspects play an important role in

IoT networks and are often unanticipated.

In this section, we introduce a way of modeling an IoT network

that captures both cyber and physical relations between devices.

While there is a large variety of attributes that identify a device

(e.g., color, casing material, etc.), for our purposes we focus only

on attributes that affect and enable interactions between devices.

For instance, we consider I/O (physical or cyber) capabilities and

location, among other features. The properties that comprise our

model are described along with snippets of code portraying our

current Alloy implementation.

3.1 Device

A device is an instance of an electronic device deployed in an IoT

network. It can be as simple as a sensing device (e.g., temperature

sensor, light sensor), an actuator (e.g., thermostat, oven) or as so-

phisticated as a commodity computer (e.g., laptop, IoT hub). Each

device is characterized by a physical location and supported in-

put/output channels, as defined by the device hardware capabilities.

Device definitions are generated manually. Information regard-

ing device capabilities, including protocols supported, and sensing

and actuating abilities, can be inferred from device documentation

available on manufacturers’ websites. Our current approach uses

sniffers to identify device types and uses manually generated device

definitions to identify capabilities (e.g., I/O channels).

Our model does not differentiate between device roles (i.e. sen-

sors, coordinators, and actuators). This allows us to capture all

possible cyber and physical relations between devices. While the

software controlling the devices may forbid some interactions, treat-

ing all devices (and roles) equally provides a more general way to

see the potential attack paths and realize the value gained by com-

paring a worst-case scenario to a more realistic approach. Other

devices inherit from this abstract model and set specific values for

each attribute; an example model of a Philips TV is shown below.

abstract sig Device{

access : lone Access ,

//some devices have access rights and are able to modify other

֒→ devices or perform tasks

channel : some Channel ,

authentication : Channel ->Authentication ,

defaultAuthentication : Channel ->Authentication ,

size : one Space ,

connections : Channel ->Device ,

inChannel : some Channel ,

subspace : lone Location ,

mobility : one Mobility ,

power : one Power ,

defaultChannels ,defaultInChannels ,defaultOutChannels : set

֒→ Channel ,

outChannel : some Channel

}{

defaultChannels = Heat + PowerAC + KeySwitch

defaultInChannels = PowerAC + KeySwitch

defaultOutChannels = Heat

defaultAuthentication = KeySwitch ->NoAuth + PowerAC ->NoAuth +

֒→ Heat ->NoAuth

}

abstract sig Authentication {}

one sig StrongAuth ,WeakAuth ,NoAuth extends Authentication {}

Listing 1: While the Alloy Language looks very similar

to object oriented Java, one should not mistake the two

and follow object oriented practices blindly; the purpose of

Alloy is to define a model and allow for formal validation,

albeit in an expressive way. For coherency, elements and

relationships prevalent in many devices are placed in the

łdefaultž sets and are inherited to every device. Ad-hoc

devices that deviate from these default sets must have

any extra default elements explicitly removed during their

definition.

abstract sig PhilipsTV extends Device {}

{

authentication = defaultAuthentication+WiFi ->StrongAuth + Voice -

֒→ >NoAuth

channel = defaultChannels + WiFi + Voice

inChannel = defaultInChannels + WiFi

outChannel = defaultOutChannels + WiFi + Voice

size = small

power = PowerWire

mobility = Immobile

}

Listing 2: An example device instance. This Phillips TV

inherits all default channels and also defines any extra

capabilities this device has, i.e the ability to produce output

in the Voice and WiFi channels; notice that this particular

model cannot receive input in the Voice channel (does not

have a microphone).

3.2 Channel

A device can have multiple channels via its input and output in-

terfaces that enable interactions. Our model considers both cyber

and physical channels. For example, Wi-Fi, Bluetooth, ZigBee, and

Z-Wave are typical examples of cyber channels used in IoT. Tem-

perature, humidity, voice, and vibration are examples of physical

channels utilized by IoT devices. The channels can be inferred from

device documentation and capabilities.

Our model also defines constraints on the interactions based on

the physical proximity of devices (further elaborated in Sections 3.4

and 3.5). Devices having a common interface and located within

the effective range can interact with each other. For example, a

Bluetooth-enabled lock can interact with a smartphone via the

Bluetooth channel when they are within Bluetooth signal range.

Similarly, an air conditioning unit producing cold air cools down

room temperature, which is sensed by a temperature sensor in



the same or adjacent room. A temperature channel connects the

air conditioning unit and the temperature sensor. In contrast, a

smart light has no such a temperature channel connected with the

air conditioning unit as its light sensor is not influenced by the

AC. A device cannot have a channel with any other device if the

corresponding interface is not supported. For instance, Amazon

Echo can not establish a ZigBee channel with any other device

because Amazon Echo does not support ZigBee. The following

listing describes how channels are modeled in Alloy.

abstract sig PHY {} // PHY stands for "physical layer"

abstract sig Channel {

medium : one PHY , range : one Space }

// only some mediums are shown for demonstration purposes

one sig Movement ,RF_802_15_4 ,Acoustic extends PHY{}

one sig ZigBee extends Channel {}{

medium=RF_802_15_4 range=large}

// although Zigbee would require two different PHY normally

// since it can be 2.4 Ghz or 900 Mhz

//we model the 2.4 Ghz version here

Listing 3: Wemodel as łChannelž anything that may enable

interaction between devices. A principal component of a

Channel is the łrangež, within which such an interaction is

effective under normal operation.

3.3 Elements of Security

Our model also allows us to capture various notions of security.

Since our objective is to identify potentially dangerous (sets of)

device interactions, we focus on authentication, although confi-

dentiality and integrity can be similarly modeled. A device that

communicates with other devices via unauthenticated channels

may potentially serve as a stepping stone to an otherwise properly

configured network. Our model defines three authentication levels

for a given channel: strong-authentication, weak-authentication or

no-authentication.

Strong-authentication represents a channel that is usually con-

sidered hard to attack. For example, a Wi-Fi channel with WPA2-

PSK enabled is considered to have strong-authentication. Weak-

authentication suggests that a channel has some degree of authen-

tication, but it is likely to be compromised by a smart attacker. For

example, Apple’s intelligent personal assistant, Siri, can be trained

to recognize particular voices and only receive channels when the

voice matches. However, a smart attacker could record the user’s

voice and activate Siri unexpectedly. No-authentication indicates

that no authentication mechanism is applied to the given channel.

Most physical channels are unauthenticated. For example, the tem-

perature channel between an AC and a thermostat is not enforced

by any authentication methods. We model authentication as a uni-

directional relationship between Channel and Authentication and

define it per device, as shown in listing 1. This approach allows us

to express and define each device’s capabilities in a fine grained

manner.

3.4 Location and Accessibility

In many IoT settings, the nature of the physical location of devices

can be important since it defines what (types) of entities have access

to such locations and, consequently, to the devices. For example,

electronic personal assistants, such as Amazon’s Echo, should not

be placed close to windows or outside walls, as they can pick up

voice commands from individuals outside the building. Such no-

tions are captured in the Location and Access entities shown in

listing /reflocals.

In our approach, we define the following Access entities: public,

private, and protected. More types can be defined, as needed. We

also assume a hierarchical order of the Access types. For example,

someone who can access a Private area can also access a Protected

area and Public areas. When applying the model, the user must

manually define location attributes for every physical location.

Users must also define the location of each device (e.g., thermostat

is in Living Room)

Public-access locations are accessible by the general public (such

as doorway, backyard and hallway). A device deployed in a public

location without protection is susceptible to attackers within reach.

Private-access locations are considered well protected (or isolated

from outsiders) such as bedrooms, private garages and document

storage rooms in office buildings. Protected-access locations are

locations such as the common areas in an apartment building pro-

tected by a doorman, where despite screening processes, devices

are at risk in the presence of malicious visitors.

open util/ordering[Access]

abstract sig Location {

access : set Access ,

size : one Space ,

sublocations : set Location ,

root : lone Location ,

distance : Location ->Space ,

adjacent : some Location

}

abstract sig Access {}

one sig Public extends Access {}

one sig Private extends Access {}

one sig Protected extends Access {}

fact accessRights {

// imposing ordering on access rights

lt[Protected , Public] ∧ lt[Private , Protected]

}

3.5 Proximity

Location provides high-level information that can be used to deter-

mine the accessibility of devices by various entities but, as defined,

it only provides partial information regarding the possibility of

interaction between any two particular devices. To combat this

challenge, our model considers proximity. For example, some in-

teractions types, such as Bluetooth communications, require near-

proximity while others, such as interactions via sound, do not. For

example, a Bluetooth-equipped device in a Private location could

be susceptible to attacks depending on the range of Bluetooth and

the capabilities of the attacker’s hardware. This is captured in our

model by employing a fact, which states that a device (or attacker)

can only interact with another device through a channel if it is

within the range defined by the channel. Our second case study 5.2

demonstrates the use of the Proximity rule. Specifically, it shows

that an attacker is capable of interacting with an insecure device

over the BLE channel due to the range of BLE, despite being unable

to enter the Living Room location. Proximity information is defined

manually per channel type.



3.6 Time and States

Our model supports scenario predictions by modeling time as a

state where volatile associations of atoms are stored. This allows us

to capture passage of time as a sequence of actions that transition

a network of things from state S to S ′, consequently enabling the

model to account for potential future changes in the topology of

the network. For example, the following Alloy snippet shows how

a state can be used to describe whether a device is ON or OFF . It

follows that a Switch action is a function that changes the Power-

State of a Device from S to S ′, a Move is a function that changes

the Location of a Device from A to B, between two states, and so

on.

sig State {

on/off : set PowerState ->Device ,

location : set Location ->Device

}

pred switchOff[s,s' : State ,d : Device ]{

ON ->d in s.on/off iff s'.on/off -s.on/off = OFF ->d

}

pred switchOn[s,s' : State ,d : Device ]{

OFF ->d in s.on/off iff s'.on/off -s.on/off = ON ->d

}

3.7 Attacker’s Capabilities

Ourmodel focuses on identifying the potential attack paths from the

cyber and physical interactions between devices. When assessing

different scenarios, it is important to consider the risk posed by

attackers on a per-device level. This can narrow down the number

of attack paths according to the environment of each use case. For

example, some scenarios may only consider attackers with access

to public locations, while others may consider the insider attacks,

where the attacker has access to any area. In our approach, wemodel

the attacker as an independent entity, identical to other entities,

as shown in listing 3.7. An attacker with the łattackCapabilityž of

weak authentication and public access can compromise anything

reachable from public areas that has weak authentication.

abstract sig Attacker{

attackCapability : some Authentication ,

access : some Access

}

sig weakAttacker extends Attacker {}{

// can be one of NoAuth|WeakAuth|StrongAuth

attackCapability = NoAuth

access = Public

}

4 IMPLEMENTATION

Our system consists of two parts: (1) a set of live sniffers that can

detect and identify devices that comprise an IoT network and (2) a

model checker implemented in Alloy. The structure of the prototype

system is shown in Figure 1. In our current implementation, we

manually convert the captured device information into the Alloy

model.

As discussed in Section 2.2, we chose to implement our model

in Alloy for its expressiveness (Alloy supports first-order logic)

and for its object-oriented programming flavor. For a more detailed

discussion of the expressiveness and performance of our Alloy

implementation see Section 5.

Alloy

Security

Policies

Prototype

System

IoT

Model

Potential

Threats

Sniffers

Figure 1: The high-level structural view of the implemented

prototype system. The proposed model is realized with Al-

loy. The sniffers detect and update necessary device infor-

mation in real-time. The system checks the constraints to

detect potential attack paths in the given IoT network.

4.1 Sniffers

The sniffers provide real-time information about devices available

in a particular IoT network. This allows for our approach to be

dynamic in nature. In other words, the sniffers enable the model to

be updated in real-time as changes in the network occur.

The sniffers passively monitor network transmissions between

devices across several network technologies (e.g., Wi-Fi, Bluetooth,

ZigBee) and many standardized protocols. The observed traffic is

then analyzed and device fingerprinting is attempted. Our sniffers

also take into account the mobility of IoT devices and as such, as-

sociate łpresence timersž with each device. If no communications

originate from a particular device within the duration of the łpres-

ence timerž, the device is marked as ławayž and removed from the

current representation of the network topology. We do not guaran-

tee completeness in the fingerprinting of devices using our sniffers.

Although currently our sniffers rely on passive network monitor-

ing, in the future we wish to improve our sniffers’ capabilities and

accuracy. Device fingerprinting is still an open research problem

and while relevant to our overall problem, it is outside the scope of

this paper.

The inferred device information is stored in a database that

provides a centralized place for the system to read the runtime data

and populate themodel for themodel checker (Figure 2). This design

enables scalability and robustness by easily supporting additional

sniffers.

Runtime

Database
ZigBee Sniffer

HackRF One

BT Sniffer

Laptop

Wi-Fi Sniffer

Laptop

BLE Sniffer

Ubertooth

Figure 2: Device information is captured and identified by

the sniffers and pushed into our database. Four types of snif-

fers are employed: Bluetooth (BT) sniffers, Bluetooth low-

energy (BLE) sniffers, Wi-Fi sniffers, and ZigBee sniffers.



We developed the following sniffers:

(1) BT and BLE Sniffers:

We use Ubertooth4, an open source Bluetooth monitoring

and development platform, and the Bluetooth Linux library

BlueZ5 to scan advertisement packets from nearby devices.

Then we use a self-modified version of BlueZ to automat-

ically go through the list of detected MAC addresses and

retrieve their primary characteristics.

(2) Wi-Fi Sniffers:

We use laptops as Wi-Fi sniffers and develop a Python pro-

gram using a Python wrapper for Wireshark67 to detect

nearby Wi-Fi connections pairs.

(3) ZigBee Sniffers:

We use the HackRF One8, a software-defined radio, to build a

ZigBee sniffer. We create a IEEE 802.15.4 transceiver revised

from an existing library9 in GNU Radio. The output from the

IEEE 802.15.4 transceiver in GNU Radio is a data stream that

outputs the captured raw packets (the packets that contain

IEEE 802.15.4 headers). A Python program is developed to

receive the packet stream, extract device information (PAN

ID, source, and destination IDs) and push the processed data

to our database.

4.2 Model Checker (Alloy)

We use Alloy 4.2 and SAT4J as the SAT solver. Our prototype sniffers

create simple signatures based on detected devices of the following

form:

one sig PhilipsTV_1 extends PhilipsTV {}

{LivingRoom ->this in ord/first.position}

one sig AmazonEcho_1 extends AmazonEcho {}

{LivingRoom ->this in ord/first.position}

Device locations and additional connections that cannot be de-

tected must be provided manually by the user as input.

5 EVALUATION

We use three case studies using real-world device setups to evaluate

the efficacy of our approach. We choose attack scenarios using

devices and configurations that would likely be encountered in a

smart-home setting. Our testbed comprised the following devices:

• Amazon Echo

• OORT Smartplug (a BLE-enabled AC power plug)

• Samsung SmartThings Hub (a coordinator for the Smart-

Things protocol that operates on top of ZigBee)

• Samsung Multipurpose Sensor (a sensor used to detect a

window’s open/close status)

• Phillips SmartTV

• Kevo Smartlock (a Wi-Fi-enabled door lock)

4Ubertooth official website: http://ubertooth.sourceforge.net/
5BlueZ official website: http://www.bluez.org/
6Wireshark Python library: https://pypi.python.org/pypi/pyshark
7Wireshark official website: https://www.wireshark.org/
8HackRF One official website: https://greatscottgadgets.com/hackrf/
9IEEE 802.15.4 O-QPSK transceiver for GNU Radio: https://github.com/bastibl/
gr-ieee802-15-4

5.1 Use Case: Hidden Paths

As physical channels are usually overlooked, paths partially or

fully constructed by physical channels are hidden until they are

discovered. In this use case, we show that a simple IoT home setup

can contain potentially dangerous hidden paths. In a scenario with

an Amazon Echo and a Philips TV, the Amazon Echo is connected

to a Kevo smart lock, and all three devices are connected to a Wi-Fi

network. The expected interactions between devices and the setup

are shown in Figure 3c. The input to our system is:

one sig PhilipsTV_1 extends PhilipsTV {}

{ location=LivingRoom }

one sig AmazonEcho_1 extends AmazonEcho {}

{ location=LivingRoom }

one sig WiFiAP_1 extends WiFiAP {}

{ location=LivingRoom }

one sig KevoLock_1 extends KevoSmartLock {}

{ location=LivingRoom }

Our system generates every implicit connection and dependency

based on the facts provided as input. Explicit connections are also

used but are not required. Our approach does not assume that a

communication link is possible only because we explicitly added

an edge; thus, if a device receives input from a given channel, it

can potentially be reached by any device producing output in that

channel. Figure 3a shows the holistic view of the network produced

by the Alloy implementation. The model exposes an unexpected

potential attack that takes advantage of an illegal communication

occurring between the Philips TV and the Amazon Echo over the

unprotected voice channel. Moreover, the model asserts that the

TV can provide output to the voice channel, while the Amazon

Echo receives input without any authentication between the enti-

ties. The feasibility of this attack is left to the user/administrator

to assess; the goal of our system is to expose potential hazards,

provide the user with detailed information and enable informed-

decision making. Recent news have provided examples of how such

unexpected device interactions over hidden channels can lead to

asset compromise.10

5.2 Use Case: Security Degradation

Our second scenario highlights the potential hazards of device

composition. We show this by adding a security constraint to our

implementation and allowing Alloy to find any violations of the

constraint. In this example, we want to guarantee that any input

only passes through authenticated channels. This dangerous sce-

nario is analogous to the confused deputy problem [8] in that any

node accepting input over unauthenticated channels but whose

output is communicated over authenticated channels can be fooled

to misuse its authority. If this property holds, the system shows no

security degradation.

This experiment assumes an IoT smart home setup composed of

an open/closed sensor, a SmartThings hub, and a smart plug. The

sensor is installed on a window and triggers user alerts when the

window is opened. The communication between the sensor and

the SmartThings hub is protected by AES-128 bit encryption. The

OORT smart plug is connected to a multi-extension cord that, with

amongst other devices, connects to the SmartThings hub. The smart

10TV unexpectedly interacts with Amazon Echo: https://www.theverge.com/2017/1/7/
14200210/amazon-alexa-tech-news-anchor-order-dollhouse

http://ubertooth.sourceforge.net/
http://www.bluez.org/
https://pypi.python.org/pypi/pyshark
https://www.wireshark.org/
https://greatscottgadgets.com/hackrf/
https://github.com/bastibl/gr-ieee802-15-4
https://github.com/bastibl/gr-ieee802-15-4
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse
https://www.theverge.com/2017/1/7/14200210/amazon-alexa-tech-news-anchor-order-dollhouse


(a) Our model follows a pessimistic approach; a device that receives input from a given channel may potentially receive input from any device

that can produce output in that channel.

(b) Detail of the output visualization from the Alloy Analyzer. A

counterexample was found at State0 that could lead to an attack.

Themain actors in the provided counterexample are the TV and

Amazon Echo, and the assertion is falsified over the Voice chan-

nel.

Living Room

Philips

Smart TV

Amazon

Echo

Kevo

Smartlock

Wi-Fi

AP

Physical ChannelCyber Channel

Wi-Fi

(c) A topological map for the use case in a small home IoT setup.

Circles are IoT instances of IoT devices, the solid lines represent

the cyber channels, and the dashed line represents the hidden

channel. The analysis indicates a potential attack path over a

hidden, physical channel: Phillips smart TV → Amazon Echo

→ Wi-Fi AP→ Kevo smart lock.

Figure 3: Our use cases as models found by the Alloy Analyzer and as topological maps.

Living Room
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Smartplug

Samsung

Open/Close
Sensor

Samsung

Hub

Physical ChannelCyber Channel

Power ZigBee

Figure 4: A topological map for studying security degrada-

tion. Representations are described in Figure 3c. In this use

case, anOORT smart plug has an unauthenticated Bluetooth

(anyone can connect to its Bluetooth), which introduces an

attack path that compromises other devices that support

stronger authentication.

plug is equipped with a BLE interface used for user control actions

such as turning it on/off and extracting historical logs regarding

power consumption. The BLE communications to the plug are not

authenticated. The following Alloy model instance captures this

scenario:

one sig LivingRoom extends Location {}{

access = Private

size = medium

}

one sig SmartThingsHubSmartplug extends OORTSmartplug {}{

֒→ location = LivingRoom

connections = PowerAC ->SmartThingsHub_1

authentication=BLE ->NoAuth

}

one sig SmartThingsHub_1 extends SmartThingsHub {}{

location = LivingRoom

}

one sig SamsungMultiSensor_1 extends MotionSensor {}{

location = LivingRoom connections = ZigBee ->

֒→ SmartThingsHub_1

}

Using this description of the environment as input, the model

checker warns of a security degradation violation, as shown in

Figure 4. The smart plug can affect the SmartThings hub via the

power (physical) channel. Since the BLE channel to the smart plug

is unauthenticated, an attacker could use spoofing commands to

turn off the smart hub, consequently making the window sensor

useless.
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Figure 5: A topological map for a home IoT setupwithmulti-

ple rooms. Representations are described in Figure 3c. In the

initial state, a Roomba vacuum is located in the bedroom,

designated Private location.

Table 1: A counterexample to the assertion, łRoomba can

never be in a Public Access area at any time.ž Alloy does not

provide or guarantee the same result for every run, it only

guarantees that a solution will be returned from the set of

possible counterexamples.

State Roomba NaiveLock Transition

S0 Bedroom Locked Initial State

S1 Living Room Locked LivingRoom → Roomba

S2 Living Room Unlocked NaiveLock→ Unlocked

S3 Hallway Unlocked Hallway→ Roomba

5.3 Use Case: Transitions and States

The use cases examined so far, while based on real setups, are static,

i.e., our system was finding ad hoc violations or hazards over a

single state. By modeling transitions and states, our system can

capture more sophisticated violations that span over time11 and are

composed of a sequence of discrete steps. This approach allows us

to find counterexamples that violate an assertion without following

a heuristics-based algorithm. All solutions are based entirely on the

provided facts and explores the entire space of possible solutions.

If a counterexample is not found, Alloy guarantees12 that there is

no counterexample up to the provided search space, but does not

guarantee that no solution exists for a larger number of atoms.

To demonstrate our system’s ability to capture these Movement

and State transitions, we consider a Roomba vacuum, which can

move. The setup in Figure 5 includes the bedroom, bathroom and

living room as private locations and the hallway as a public location.

The hallway, while physically adjacent and accessible to the private

spaces, is isolated by a smart lock that can (like the OORT smart

lock) be compromised over the BLE channel. This smart lock, when

unlocked, opens a garage door. In the initial State S0, the Roomba

vacuum is located in the bedroom, a private location. With this

scenario as input to our Alloy prototype, we attempt to verify the

11We model time as a series of consecutive states.
12Alloy tutorial and info: http://alloy.mit.edu/alloy/tutorials/online/frame-FS-1.html

assertion: łRoomba can never be in a public access area, at any time.ž

The assertion fails and a counter-example is found in as few as four

states. To have a detailed history of the required steps, we allow

one transition between each consecutive state; thus, between states

S and S ′, Roomba can move from the bedroom to the living room,

or the attacker can switch the lock on or off, but both cannot occur

simultaneously. One solution given by Alloy appears in Table 1.

The order of the solutions provided by Alloy may differ between

runs. Additionally, the solutions depend on the number of states;

if a higher number of states is requested as a mandatory solution

prerequisite, the solution will include a higher number of steps.

Such solutions may have transitions that cancel each other, such as

repeatedly moving the Roomba between the living room and the

bedroom.

5.4 Performance Analysis

The experiments were performed on a 3.1 GHz Intel Core i7 proces-

sor with 16 GB RAM. For each round, we performe the experiment

ten times and calculate the average CPU time. The number of

clauses constructed for a particular configuration drives the mem-

ory consumption of the SAT solver SAT4J for that configuration.

The results of our experiments are summarized in Table 2 and Fig-

ure 6. In the evaluated scenario, we model a single attacker. We

assume the devices are on the same network and in two different

physical locations.

The SAT solver, SAT4J, exhaustively enumerates all possible

combinations of devices and device states, and constructs clauses

for these conditions. As expected, the number of clauses increases

exponentially with the number of devices. This is supported by

CPU and memory overhead measurements.

For smaller networks, although the number of clauses grew

steadily, the impact on the CPU time was minimal. However, as the

number of devices increases, the CPU time increases exponentially,

as illustrated in Table 2. For the configuration with the largest

number of clauses, with 25 devices and 50 states, the CPU time is a

reasonable 37 seconds. Every time a new node is introduced, this

step is repeated. When the number of states was increased to 100,

the memory was not sufficient. This upper bound depends on the

device on which the experiments are performed. We note that our

method is applicable for networks with smaller number of nodes

and states, and does not scale to large networks. Figure 6b shows

how the state space explodes when the number of devices reaches

25 and the number of states is increased linearly.

While the Alloy specification languages offers rich expressive-

ness, the theorem-proving strategy of Alloy restricts its applicability

to scopes of limited size. In the future, we plan to investigate alter-

native options, including Prolog, that offer higher scalability. Initial

results show that Prolog’s backtracking approach may be superior

in terms of performance but more analysis is needed.

6 DISCUSSION

In this paper, we propose a way of modeling cyber and physical

interactions between IoT devices of a given network. Our approach

considers several noteworthy properties. First, by intertwining the

real-time device identification into the system, our approach can

identify and verify possible device interactions against user-defined

http://alloy.mit.edu/alloy/tutorials/online/frame-FS-1.html
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(a) Calculating the amount of time taken to find a counterexam-

ple to the noSecurityDegradation assertion.
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(b) Calculating the number of clauses generated for a specific

number of device and states.
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(c) Calculating the amount of time taken to construct a set of

clauses for a given number of devices and number of states.

Figure 6: Analyzing the CPU and memory consumption of Alloy for our models when the number of devices and states are

varied.

policies in real time. Additionally, our model can be used to perform

a differential assessment of two IoT networks. Specifically, we are

interested in identifying how the addition (or removal) of an IoT

device into an existing network impacts the interactions between

devices and, consequently, the set of possible attack paths. Such

information can be useful to determine if a particular device serves

as a bridge between isolated IoT sub-networks, enabling new attack

paths.

Our approach has a few limitations. Currently, our approach

assumes that it is possible to identify all IoT devices and infer their

location by passively sniffingwireless communications. This is a fair

assumption since IoT devices are restricted in power and computing

capabilities and rely on hubs or clouds to performmost of their tasks.

Device fingerprinting is, however, non-trivial. For completeness, it

must be able to differentiate between device versions (since new

device version could introduce hardware changes) and instances

(especially for mobile IoT devices).

In attempts to support various threat models, we take a łpes-

simisticž approach. Consequently, our model allows users to con-

sider attackers of various capabilities, from attackers that can only

influence input to attackers that can fully control the device. In

doing so, however, our model fails to consider the limitations in be-

havior (input/output functions) imposed by the software operating

on the devices. In other words, we assume that all possible combina-

tions of input/output channels are possible. The software running

on the IoT devices, however, may only enable certain input/output

channel pairs. For example, a smart smoke detector equipped with

a CO2 sensor and a motion sensor, will sound the alarm if smoke

is detected but not if motion is detected. Some of the attack paths

identified by the model can, therefore, be considered false positives

since they are not feasible without modification of the devices’ soft-

ware. To mitigate this issue, in the future, we wish to explore two

options. One option is to couple our approach with a classification

system that filters unrealistic paths. Another option is to expand the



Table 2: CPU time analysis raw data. We made use of the SAT4J solver built into the Alloy4 framework. We set the following

parameters for the other variables - <Attacker=1,Network=1,Location=2,Space=4,Access=4,PowerState=2>, and checked for

the property noSecurityDegradation. Based on our evaluation, the complexity increases in a non-linear manner, and this

approach will not scale for high numbers of devices and states.

Number of Devices Number of States Clauses Construction Time (ms) Counterexample Time (ms)

6 5 11667 52 14

7 5 13915 49 17

7 25 130715 222 29

10 5 21595 206 46

10 25 224975 1181 132

20 5 57335 950 34

20 25 705315 6399 226

25 5 81055 2251 47

25 25 1041335 13338 230

25 50 4013560 37010 3157

model so that devices are defined by a set of input/output functions

as defined by their software. The approach presented in this paper

also shares the innate limitations of all SAT solvers. As discussed

in Section 5.4, the processing time increases non-linearly with the

number of devices and states in the Alloy implementation. In the

future, we wish to explore alternative options that provide better

scalability, making the approach practical even for industrial IoT

networks.

7 CONCLUSION

Assessing and modeling the security of IoT systems is challenging

because of their cyber-physical nature and heterogeneity. In this

paper, we propose a way to model both cyber and physical interac-

tions among IoT devices and consider that physical interactions are

łchannelsž through which malicious inputs can be passed, denial of

service triggered and other attacks can occur. These physical inter-

actions include and go beyond the ones expected by the functional

requirements of the system (a speaker communicating to Amazon

Echo is not a functional specification, but is a channel). To validate

the viability of our ideas, we implemented a proof-of-concept model

using model checking tools (Alloy). Our model was able to cover

attacks that would be undetected if model interactions were limited

to cyber connections or the physical interactions already foreseen

by the functional design of the system. During our evaluation, we

identify that due to the size of the search space, SAT solvers ex-

plore all possible combinations and although extremely powerful,

it hinders scalability of our model to only small IoT settings such

as smart-home environments.
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