
Ghostbusting: Mitigating Spectre with
Intraprocess Memory Isolation

Ira Ray Jenkins1, Prashant Anantharaman1, Rebecca Shapiro2,
J. Peter Brady1, Sergey Bratus1, Sean Smith1

1 Dartmouth College
2 Narf Industries

https://prashant.at
prashant.anantharaman.gr@dartmouth.edu

1

https://prashant.at
mailto:prashant.anantharaman.gr@dartmouth.edu

The Principle of Least Privilege
● It requires that the individual components of a system need to have a minimal

set of permissions to perform their functionality.

○ Privilege separation and intraprocess memory isolation are just some of the ways of enforcing

this principle.

○ Spectre V1 attack was an example of an intraprocess memory attack where a secret was leaked

despite not being accessed by the program at all.

● In our paper:

○ We demonstrate how intraprocess isolation techniques such as Memory Protection Keys (MPKs)

and ELF-based Access Control (ELFbac) can be effective in mitigating the Spectre V1 attack.

○ We enforce the policy that a secret after initialization must not be touched.

2

Outline
● Spectre V1

● ELF-based Access Control

● Memory Protection Keys

● Evaluation

● Conclusions

3
Picture: https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

Speculative Execution

● Instructions within a pipeline are
executed out of order.

● The results are later reordered and
the dependencies are satisfied to
assure semantics are maintained.

● Speculative execution predicts the
control flow and executes
instructions prior to knowing if they
are required.

4

Source:
https://www.extremetech.com/computing/261792-what-is-speculative-execution

Branch Prediction

● Dynamic Branch Predictors use:
○ Single bit: simply storing the last branch

taken.

○ Multi bit: Pattern History Tables (PHTs)

● PHTs store the history of the
branches taken to allow future
branches to be predicted.

● Neural Networks have also been
designed to predict branches.

5
http://web.engr.oregonstate.edu/~benl/Projects/branch_pred/

Speculative Execution Attacks

● In 2018, CVE-2017-5753 introduced
“Spectre”

● CPUs MUST flush pipeline when
miss-speculation occurs.

● Flushing does occur for the pipeline,
but not for the caches and
microarchitectural effects remain after
the transient instructions.

6

Spectre V1

7

● There’s a speculative bypass of the bounds

check.

● The underlying technique for V1 is to

exploit the branch prediction by poisoning

the PHT to mispredict this conditional

branch.

○ Train the CPU with valid values for x

○ Give a bad x value.

○ CPU speculates and caches an

“index” into array2.

○ Use timing side channel to recover

“secret” from array2.

● The program, however, never touches the

“secret”

void victim_function(size_t x) {
 if (x < array1_size) {

temp &= array2[array1[x] * 512];
 }
}

Outline
● Spectre V1

● ELF-based Access Control

● Memory Protection Keys

● Evaluation

● Conclusions

8

ELF-based Access Control

● ELFbac uses policy-infused binaries.
● ELF binaries contain sections and

segments.
○ Sections define semantically distinct

units of a program: code, data, metadata,

etc.

○ Segments group sections.

○ They define the permissions of the

memory sections.

● What if we can enforce permissions
on the sections instead of the
segments? Fine-grained access
control in binaries.

9elfbac.org

Injecting the policy
● We isolate the global data such as

the “secret” in the case of Spectre
into a separate section using the
__attribute__ gcc syntax.

● The policy is described in a
domain-specific language based on
Ruby.

● The policy gets added to the binary
as a separate ELF section.

10

How does ELFbac enforce policy?

● The loader is policy aware.

● The kernel enforces the policy:

○ All the pages are unmapped. At each new

access, there is a page fault and the

permissions are checked.

○ During a state transition, the TLBs are

flushed to invalidate all the entries and

the cache.

● So what does the program’s address
space look like?

11

Process view vs. Kernel View

12

ELFbac policy vs. Spectre

● In the V1 PoC, apart from
initialization, the rest of the program
does not touch the variable “secret”

● We divide the program into two
states.

○ Only the init state has access to the

secret.

○ The program transitions to the go

immediately after initialization of all the

globals.

13

ELFbac policy vs. Spectre (contd.)

14

Outline
● Spectre V1

● ELF-based Access Control

● Memory Protection Keys

● Evaluation

● Conclusions

15

Memory Protection Keys

● Since the permission enforcement
happens via page faults and TLB
flushes, this does incur a huge
overhead.

● Page table entries on Linux include 4
bits reserved for the security domain
or state in which this page would be
accessible.

● The PKRU register stores 2 bits for
each state or security domain: read
and write permissions for the
domain. 16

Memory Protection Keys (contd.)

● We implemented the same state
machine as earlier.

○ Init state where initialization is allowed.

○ Go state where access to the secret is
revoked.

● We revoked permissions to the
secret after it was initialized.

17

int real_prot = PROT_NONE;

int pkey = pkey_alloc (0,
PKEY_DISABLE_WRITE);

int ret =
pkey_mprotect(secret ,
getpagesize (),real_prot ,
pkey);

Outline
● Spectre V1

● ELF-based Access Control

● Memory Protection Keys

● Evaluation

● Conclusions

18

Evaluation

● Is intraprocess memory isolation effective against SpectreV1?

● What is the programmer effort required to build a policy for ELFbac and to
modify the existing source code?

● How does ELFbac compare in terms of programmer effort to other mitigation
techniques against Spectre V1?

● What is the performance impact due to ELFbac and MPKs in comparison to other
mitigations?

19

ELFbac and MPKs vs. Spectre V1

● We built two policies for ELFbac: one allowing Spectre V1 PoC to execute, and
another to disallow it.

● We also built two modifications of our MPK implementation to again allow and
disallow the attack.

● In both cases, when the protections are turned on, we found that the secret was
not found since the speculative branch is unable to access the secrets.

20

Demo of the PoC

21

Programmer Effort

● Using serializing instructions such as
lfence would only include adding one
line of code.

● However, we would need to identify
every instance of code that can be
speculatively executed and add an
lfence.

● The process of building the right
ELFbac policy involves a lot of trial
and error.

22

Performance

● We performed our ELFbac
experiments on an Intel Xeon
E31245 3.30 GHz processor with
four cores and 4GB RAM running a
modified ELFbac kernel and Loader.

● MPK experiments were done on an
Intel Xeon Platinum 8168 instance
on Microsoft Azure Cloud with
support for MPKs with one core and
2GB RAM.

23

Discussion and Conclusions

● Our work using ELFbac and MPKs are isolated to Intraprocess memory attacks
such as Spectre V1.

○ SpectreRSB and Spectre 1.1 are also intraprocess memory attacks and could be mitigated using

the same technique.

○ SpectreRSB attacks exploiting multiple processes and the Intel SGX, however, are not in the scope

of ELFbac that targets intraprocess memory attacks.

● ELFbac does need some speed enhancements. We are working on a version of
ELFbac that uses MPKs for intraprocess isolation.

● Neither ELFbac nor MPKs mitigate vulnerabilities entirely, but isolate them and
make life harder for attackers.

24

Thank You
https://prashant.at
prashant.anantharaman.gr@dartmouth.edu

Ray Jenkins: jenkins@cs.dartmouth.edu
Rebecca Shapiro: bx@narfindustries.com
Sean Smith: sws@cs.dartmouth.edu
Sergey Bratus: sergey@cs.dartmouth.edu
J. Peter Brady: jpb@cs.dartmouth.edu

25

https://prashant.at

