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The Principle of Least Privilege
● It requires that the individual components of a system need to have a minimal 

set of permissions to perform their functionality. 

○ Privilege separation and intraprocess memory isolation are just some of the ways of enforcing 

this principle. 

○ Spectre V1 attack was an example of an intraprocess memory attack where a secret was leaked 

despite not being accessed by the program at all.

● In our paper:

○ We demonstrate how intraprocess isolation techniques such as Memory Protection Keys (MPKs) 

and ELF-based Access Control (ELFbac) can be effective in mitigating the Spectre V1 attack. 

○ We enforce the policy that a secret after initialization must not be touched. 

2



Outline
● Spectre V1

● ELF-based Access Control

● Memory Protection Keys

● Evaluation

● Conclusions

3
Picture: https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)



Speculative Execution

● Instructions within a pipeline are 
executed out of order. 

● The results are later reordered and 
the dependencies are satisfied to 
assure semantics are maintained.

● Speculative execution predicts the 
control flow and executes 
instructions prior to knowing if they 
are required.
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Source: 
https://www.extremetech.com/computing/261792-what-is-speculative-execution



Branch Prediction

● Dynamic Branch Predictors use:
○ Single bit: simply storing the last branch 

taken.

○ Multi bit: Pattern History Tables (PHTs)

● PHTs store the history of the 
branches taken to allow future 
branches to be predicted. 

● Neural Networks have also been 
designed to predict branches.
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Speculative Execution Attacks

● In 2018, CVE-2017-5753 introduced 
“Spectre”

● CPUs MUST flush pipeline when 
miss-speculation occurs. 

● Flushing does occur for the pipeline, 
but not for the caches and 
microarchitectural effects remain after 
the transient instructions. 
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Spectre V1
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● There’s a speculative bypass of the bounds 

check. 

● The underlying technique for V1 is to 

exploit the branch prediction by poisoning 

the PHT to mispredict this conditional 

branch.

○ Train the CPU with valid values for x

○ Give a bad x value.

○ CPU speculates and caches an 

“index” into array2. 

○ Use timing side channel to recover 

“secret” from array2. 

● The program, however, never touches the 

“secret”

void victim_function(size_t x) {
  if (x < array1_size) {

temp &= array2[array1[x] * 512];
  }
}
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ELF-based Access Control

● ELFbac uses policy-infused binaries.
● ELF binaries contain sections and 

segments. 
○ Sections define semantically distinct 

units of a program: code, data, metadata, 

etc.

○ Segments group sections. 

○ They define the permissions of the 

memory sections. 

● What if we can enforce permissions 
on the sections instead of the 
segments? Fine-grained access 
control in binaries.  

9elfbac.org



Injecting the policy
● We isolate the global data such as 

the “secret” in the case of Spectre 
into a separate section using the 
__attribute__ gcc syntax.

● The policy is described in a 
domain-specific language based on 
Ruby.

● The policy gets added to the binary 
as a separate ELF section. 
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How does ELFbac enforce policy?

● The loader is policy aware. 

● The kernel enforces the policy:

○ All the pages are unmapped. At each new 

access, there is a page fault and the 

permissions are checked.

○ During a state transition, the TLBs are 

flushed to invalidate all the entries and 

the cache. 

● So what does the program’s address 
space look like?
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Process view                     vs.                  Kernel View

12



ELFbac policy vs. Spectre

● In the V1 PoC, apart from 
initialization, the rest of the program 
does not touch the variable “secret”

● We divide the program into two 
states.

○ Only the init state has access to the 

secret.

○ The program transitions to the go 

immediately after initialization of all the 

globals.
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ELFbac policy vs. Spectre (contd.)
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Memory Protection Keys

● Since the permission enforcement 
happens via page faults and TLB 
flushes, this does incur a huge 
overhead. 

● Page table entries on Linux include 4 
bits reserved for the security domain 
or state in which this page would be 
accessible.

● The PKRU register stores 2 bits for 
each state or security domain: read 
and write permissions for the 
domain. 16



Memory Protection Keys (contd.)

● We implemented the same state 
machine as earlier. 

○ Init state where initialization is allowed.

○ Go state where access to the secret is 
revoked.

● We revoked permissions to the 
secret after it was initialized. 
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int real_prot = PROT_NONE;

int pkey = pkey_alloc (0, 
PKEY_DISABLE_WRITE);

int ret = 
pkey_mprotect(secret , 
getpagesize (),real_prot , 
pkey);
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Evaluation

● Is intraprocess memory isolation effective against SpectreV1?

● What is the programmer effort required to build a policy for ELFbac and to 
modify the existing source code? 

● How does ELFbac compare in terms of programmer effort to other mitigation 
techniques against Spectre V1?

● What is the performance impact due to ELFbac and MPKs in comparison to other 
mitigations?
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ELFbac and MPKs vs. Spectre V1

● We built two policies for ELFbac: one allowing Spectre V1 PoC to execute, and 
another to disallow it. 

● We also built two modifications of our MPK implementation to again allow and 
disallow the attack. 

● In both cases, when the protections are turned on, we found that the secret was 
not found since the speculative branch is unable to access the secrets.
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Demo of the PoC
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Programmer Effort

● Using serializing instructions such as 
lfence would only include adding one 
line of code. 

● However, we would need to identify 
every instance of code that can be 
speculatively executed and add an 
lfence.

● The process of building the right 
ELFbac policy involves a lot of trial 
and error. 
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Performance

● We performed our ELFbac 
experiments on an Intel Xeon 
E31245 3.30 GHz processor with 
four cores and 4GB RAM running a 
modified ELFbac kernel and Loader. 

● MPK experiments were done on an 
Intel Xeon Platinum 8168 instance 
on Microsoft Azure Cloud with 
support for MPKs with one core and 
2GB RAM. 
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Discussion and Conclusions

● Our work using ELFbac and MPKs are isolated to Intraprocess memory attacks 
such as Spectre V1. 

○ SpectreRSB and Spectre 1.1 are also intraprocess memory attacks and could be mitigated using 

the same technique. 

○ SpectreRSB attacks exploiting multiple processes and the Intel SGX, however, are not in the scope 

of ELFbac that targets intraprocess memory attacks.

●  ELFbac does need some speed enhancements. We are working on a version of 
ELFbac that uses MPKs for intraprocess isolation. 

● Neither ELFbac nor MPKs mitigate vulnerabilities entirely, but isolate them and 
make life harder for attackers.
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