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Abstract
The healthcare industry has been the victim of numerous high-
profile cyberattacks in recent years. Entire hospital networks have
been compromised due to ransomware, forcing hospitals to tem-
porarily revert to an entirely paper-based system while backups are
restored or, worse, the ransom is paid. With the push for more inter-
operability between the Electronic Health Record Systems (EHRs)
used by hospitals, standards such as Fast Health Interoperability Re-
sources (FHIR) have come up to ensure standardized data exchange
between these providers.

This paper studies the support for such interoperability protocols
in popular open-source EHRs. We built a first-of-its-kind system,
the FHIR Garden, that provides a containerized environment to
compare several FHIR implementations by importing and export-
ing the same patient data across all the implementations. Unlike
other interoperability-focused tools, our system does not find non-
compliance or implementation-specific issues. Instead, we focus
on finding mismatches between how implementations process and
export a patient’s records, which adversaries can then leverage to
affect patient health.

As a result of this work, we identified 59 parser differentials in
JSON implementations in popular open-source FHIR servers. We
also identified vulnerabilities in OpenEMR related to their Consoli-
dated Clinical Document Architecture format that were promptly
disclosed and fixed.

CCS Concepts
• Security and privacy → Web protocol security; Software
reverse engineering.
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1 Introduction
Recent cyberattacks against clinical data processing systems, such
as United Healthcare, have been estimated to have resulted in losses
of almost $1 billion in a single incident [4], compared to the aver-
age cost of US-based cyber incidents estimated at $9.4 million [12].
These attacks pose a greater threat than normal to patients’ privacy,
given the nature of the data stored by hospitals, such as demo-
graphic information, medical histories, mental health conditions,
insurance coverage information, and any other notes taken by a
medical health professional. Given these risks, utmost attention is
paid to protecting these critical systems from adversaries.

On the other hand, there are numerous situations where a patient
maywant their health records sent to another provider. (1) A patient
may be switching primary care providers. (2) A patient needs to
visit a specialist who needs to see the prior records. (3) A patient is
receiving emergency care, and the providers need to know about
prior conditions and allergies. These constitute scenarios where
a hospital must facilitate the transfer of these health records to
another provider to aid the patient. Health Information Exchanges
(HIE) facilitate these transactions in a geographic region [13].

Before the 21st Century Cures Act passed, Medical Software
was defined as a “Medical Device” regulated by the Food and Drug
Administration (FDA) under Section 520 of the Federal Food, Drug,
and Cosmetic Act. This categorization made it hard for electronic
health record software to be updated with sufficient certification
from the FDA. Subsequently, the passage of the Health Information
Technology for Economic and Clinical Health Act in 2009 incen-
tivized healthcare providers to adopt Electronic Health Record
(EHR) software to record patient data to improve patient care and
interoperability.1 The US CDC reports that as of 2021, 88.2% of
physicians use any EHR, whereas 77.8% of them use a certified
EHR.2

An EHR is complex and includes over 5000 variables, with more
being added every day [5]. A study of patient experienceswith EHRs
and interoperability in the National Health Service (NHS) in the
United Kingdom [15] found that a lack of adequate interoperability
1https://www.govinfo.gov/content/pkg/PLAW-111publ5/pdf/PLAW-111publ5.pdf
2https://www.cdc.gov/nchs/fastats/electronic-medical-records.htm

https://doi.org/10.1145/3689942.3694743
https://doi.org/10.1145/3689942.3694743
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led to inaccurate medical records and forced patients to identify
workarounds to provide the needed clinical data rather than using
an interoperability service. Numerous studies have also examined
how introducing EHRs and interoperability has led to physician
burnout [2, 9, 11, 23].
Interoperability Standards. Two standards organizations primar-
ily specify healthcare interoperability requirements and rules. First,
openEHR defines syntactic and semantic archetypes for clinical
data [10]. openEHR is widely used by the National Health Services
of the United Kingdom and in Australia by the National e-Health
Transition Authority of Australia. The Health Level 7 (HL7) has
provided several standards since its founding in 1989. Their core
standards for interoperability started from version 2, version 3,
Clinical Document Architecture (CDA), to the now popular Fast
Health Interoperability Resources (FHIR; pronounced fire). These
HL7 standards are text-based, where CDAs use XML, whereas FHIR
supports XML, JSON, and Turtle formats.

Table 1 shows the number of publicly accessible FHIR servers by
the vendor as searched on the Internet search engine Shodan [18].
Cloud-based providers, such as Microsoft, Google, Epic, and Cerner,
may be sufficiently masking their FHIR instances or placing them
inside virtual private networks (VPNs) to prevent them from being
discovered using tools like Shodan. HAPI FHIR is the most popular
open-source FHIR implementation and powers several commercial
FHIR offerings, such as Smile CDR and OpenMRS.

FHIR Service Instances on Shodan
Google FHIR 3
HAPI FHIR 36
Smile CDR 23
OpenEMR 1057

Microsoft FHIR 3
Health Intersections 3

Table 1: FHIR Server Instances publicly accessible

This paper seeks to understand the extent to which interoperabil-
ity standards have been adopted in open-source software and how
they withstand malicious data. Differences between implementa-
tions of the same data format, known as parser differentials, can have
dire consequences for real-world systems. For example, numerous
HTTP smuggling attacks and Apple property list vulnerabilities
have been demonstrated in the past that focus on exploiting differ-
ences between parsers [14, 19]. In healthcare settings, differentials
between how a FHIR record is interpreted by two implementations
can lead to errors in patient records.

This study focuses on identifying misinterpretations between
the JSON and XML implementations of various FHIR servers to
understand how they adhere to the rules in the FHIR specification
and whether violations of differences can be exploited. First, we
found that adoption of FHIR interoperability standards in open-
source EHRs are minimal, and they may often be error-prone. Next,
we built the FHIR Garden, a collection of containers to compare
open-source FHIR servers, and a toolkit to provide the same input
to the servers and compare their output.
Contributions.

• We present a first-of-its-kind testbench to compare various
FHIR implementations by sending the same request to all

servers and comparing their output. This test bench is im-
portant for studying the interoperability of these EHR and
FHIR software solutions.

• Our toolkit also supports chaining multiple FHIR servers
using import/export operations to study how vulnerabilities
can be leveraged.

• We present numerous findings demonstrating how specifica-
tions have been misinterpreted by prominent EHR software
and how this affects interoperability.

Responsible Disclosure. Our findings were reported to the Open-
EMR community through their GitHub repository, discussion board,
and Telegram group.
Code Availability. Our code is available at https://github.com/
narfindustries/digiheals-public under the GNU Public License Ver-
sion 3.

2 Related Work
Fast Health Interoperability Resources (FHIR). The FHIR stan-
dard, introduced in 2011, is currently in its fifth release and provides
rules for importing and exporting electronic health records. FHIR
is implemented on top of HTTPS, where REST APIs are provided
for participants to query. Some examples of resources available via
a FHIR server are: Patient, Observation, and Procedure. FHIR
supports three export formats: JSON, XML, and Turtle (RDF). To
query a FHIR API for all patients, you can request the Patient re-
source without any queries. To request a single patient, following
the URL /Patient/id would access the records of that particular
patient.
Studies of interoperability issues.Numerous studies have identi-
fied a core set of roadblocks to complete adoption of interoperability
standards [1, 7, 16].
(1) Standards may not be multi-purpose: A standard may not apply
to all the use cases and may need more support in the form of
implementation guides to make it more feasible to use.
(2) Overlap in Standards:The overlap inHL7, ASCX12, and openEHR
only leads to confusion regarding an EHR provider choosing which
standards to adhere to and support.
(3) Agencies not supporting one of the existing prominent stan-
dards: if federal agencies and providers do not adhere to these
interoperability standards and require data downloads in their own
format, these standardized goals are not serving their purpose.
(4) Constant evolution of standards: newer standards require major
retooling and significant re-work. In addition, different HL7 stan-
dards have different purposes, and supporting all of them would be
needed to support broad scopes of healthcare workflows.
Tools to test compliance of FHIR systems. Table 2 compares the
FHIRGarden to other projects to improve interoperability. Although
these systems help improve compliance and test the features of
FHIR systems, these are not security-focused tools designed to
uncover systems’ vulnerabilities.
Fuzzing is the process of sending random input through a tar-
get program in an attempt to uncover implementation bugs in the
software. The FDA had announced that it would be using a fuzzer,
Defensics, to uncover security vulnerabilities in software [3]. How-
ever, we have not seen any subsequent reports that discuss their
findings. Another common direction existing research follows is

https://github.com/narfindustries/digiheals-public
https://github.com/narfindustries/digiheals-public
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Tools Asbestosa Matchboxb Infernoc Interoperability
Landd

Touchstonee FHIR Gardenf

Organization NIST (US Na-
tional Institute
of Standards and
Technology)

ahdis (Switzerland) ONC (Office of the
National Coordina-
tor for Health IT)
and MITRE

Interoperability In-
stitute supported by
Michigan Health In-
formation Network
(MiHIN)

AEGIS Narf Industries

Open-Source Yes Yes Yes No No Yes
Availability Free Free Free Freemium Freemium Free
Target Users Healthcare IT Devel-

opers and Integra-
tors

Healthcare IT Devel-
opers and Integra-
tors

Healthcare IT Devel-
opers and Integra-
tors

Healthcare IT Devel-
opers and Integra-
tors

Healthcare IT Devel-
opers and Integra-
tors

Cybersecurity Re-
searchers, Healthcare
IT Developers and
Integrators

Technology Stack Java, Tomcat, Vue Java (JDK 11),
Spring Boot,
Apache Maven,
Docker, Kubernetes,
Angular

Ruby, Docker Unknown Unknown Python, Docker

Scope Microservice envi-
ronment for health-
care interoperability
standards testing, in-
tegrating IHE XDS
& FHIR profiles.

Microservice en-
vironment for
implementing &
testing FHIR-based
solutions and for
mapping healthcare
data into HL7 FHIR
standards.

Automated tool for
creating, executing,
and sharing HL7
FHIR Standard API
conformance tests.

Sandbox to develop,
integrate, and test
healthcare interop-
erability combined
with capabilities
for complex FHIR
implementation
testing.

Open access IaaS
and TaaS for com-
prehensive interop-
erability and con-
formance testing of
health information
exchange systems.

Testbench to study
the interoperability
of EHR and FHIR soft-
ware tools in health-
care data and the se-
curity flaws associ-
ated with them.

Features Supports server,
client & interoper-
ability testing.

Validates FHIR
Implementations
through API or GUI
using HL7 Java
reference validator.

Checks compliance
to FHIR implementa-
tion guides.

Generates HL7
FHIR-compatible
synthetic patient
test with clinically
relevant encounters.

Internet-based in-
teroperability FHIR
Testing against the
HL7 FHIR specifica-
tions and standards.

Allows researchers
to study the output
of different FHIR
servers receiving the
same patient data.

Comprises a record-
ing proxy and a test
Engine functioning
in Server and Client
testing modes.

Supports creation of
customized Match-
box containers for
specific adaptations

Validates individual
FHIR Resources to
base FHIR specifica-
tion or specific FHIR
profiles using HL7
FHIR Java Validator.

Includes pre-loaded
synthetic FHIR
Healthcare data and
safe harbor PHI
de-identification
services.

Tests interoperabil-
ity with other FHIR
Server and FHIR
Client implementa-
tions.

Chainsmultiple FHIR
servers to study inter-
operability and their
import/export opera-
tions.

ahttps://github.com/usnistgov/asbestos
bhttps://github.com/ahdis/matchbox/tree/main

chttps://github.com/inferno-framework
dhttps://interoperabilityinstitute.org/iol/
ehttps://touchstone.aegis.net/touchstone/

fhttps://github.com/narfindustries/digiheals-public
Table 2: A comparison of interoperability tools

fuzzing DICOM (image sharing protocol used in medical settings)
implementations [21].

Our use of fuzzing in the FHIR Garden varies from these di-
rections in that we employ differential fuzzing to avoid finding
vulnerabilities or programming errors in one software but find dif-
ferences between multiple software that must implement the same
protocol or format.

3 Approach
3.1 Goals
We set out to build this FHIR Garden and the tooling around it with
specific goals in mind.

• Comparing Data Structures: The tooling must allow re-
searchers to study the output of different FHIR servers that
receive the same patient data. Differences in interpreting this
data can lead to some fields being omitted or overlapping
with other fields in the patient data.

• Enabling Differential Fuzzing: The tooling must support
robust differential fuzzing as an end goal. To enable this

differential fuzzing, these engines must support the same
input and output types to enable seamless comparison.

• Chainability:When a vulnerability is identified, the tooling
must enable support to send an EHR through a chain of FHIR
servers to study how these vulnerabilities can be leveraged.

Table 3 provides a framework for how we chose our target EHRs
and FHIR servers, summarizing their features. Although popular
open-source EHRs like OpenEMR and GNU Health provide some
preliminary support for FHIR, they do not implement the FHIR
Write protocols that allow the creation of new patients using FHIR.
Without support for the FHIR Write protocol, we cannot test their
Patient import functionality, and they are not fully supported in
our HTTP Garden tooling. The table also includes the commercial
providers Epic and Cerner to demonstrate how no open-source
tooling implements all the features necessary. We also see that
SMART-on-FHIR authentication is not commonly supported by
FHIR servers, making them vulnerable to releasing private patient
data if not secured using other means.

https://github.com/usnistgov/asbestos
https://github.com/ahdis/matchbox/tree/main 
https://github.com/inferno-framework
https://interoperabilityinstitute.org/iol/
https://touchstone.aegis.net/touchstone/
https://github.com/narfindustries/digiheals-public
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EHR Software Libraries Programming Language HL7 FHIR HL7 CCDA
JSON XML Write Read SMART Write Read

Epic - - -
Oracle Cerner - - -

HAPI FasterXML/Jackson Javax XML Java - -
IBM FHIR Jakarta Jakarta Java - -
Blaze FHIR FasterXML/Jackson Javax XML Clojure - -

VistA M Server M Server MUMPS
OpenMRS FasterXML/Jackson Javax XML Java
OpenEMR PHP JSON SimpleXML PHP

GNU Health Python JSON DifusedXML Python
Table 3: A comparison of the JSONparsing libraries used in open-source software. ( : Feature fully supported; : Feature claimed,
but not verified by the FHIR Garden team; : Feature not supported). SMART is an authentication protocol implemented on
top of FHIR to ensure that only authenticated clients access sensitive resources.

Synthea 

Patient Files

P11 JSON file

FHIR JSON Implementation 1

POST 
Patient

GET 
Patient

db

FHIR JSON Implementation n

POST 
Patient

GET 
Patient

db

Data 
Generator

JSON Export

JSON 
Comparison 

Engine

JSON 
Mutation 
Engine

Figure 1: The FHIR Garden approach to comparing various FHIR implementations and their parsers

3.2 Architecture
The FHIR Garden contains a collection of Docker container descrip-
tions and tools to compare their outputs (Figure 1). Using the FHIR
Garden, researchers can set up local instances of these FHIR ser-
vices to compare how they respond to well-formed and malformed
FHIR requests. Our tooling was written entirely in Python, and it
provides command-line tools for researchers to run files through
the FHIR servers and visualize their differences.

3.2.1 Comparing FHIR implementations. For each resource type
supported by an instance, we perform the following steps to com-
pare the FHIR implementation:

(1) Get an FHIR JSON file from Synthea, directly user-supplied
file, or via the fuzzer output.

(2) Send HTTP POST requests to the FHIR server with the cor-
responding resource. If successful, extract the created ID for
the resource.

(3) Send a GET request to the FHIR server with the user ID and
log the JSON output.

(4) Repeat the above steps for all the FHIR servers under test.
(5) Compare the JSON output across all the servers and the

original input provided.

Figure 2: Game of Telephone with data generated from
Synthea passing through a single FHIR server (n=1) and fin-
ishing at end

Storing the output in a database. We leveraged the Neo4J
database to store the output of our “Game of Telephone” tooling
and FHIR Garden servers. Figure 2 shows a sample output from
our Neo4J database. Each node in the graph represents an FHIR
server or the source of the file, whereas the edges contain the exact
JSON structure exported by the source of an edge. We also provide
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Figure 3: JSON differences between the input and output patient data passing through each FHIR server

a command line tool to differentiate between JSON structures. We
used the deepdiff library to compare the JSON outputs and com-
pute the edit distance across these versions [8]. Figure 3 shows the
output of our command-line tooling.

3.2.2 Using Synthea. Synthea [20] is a publicly available tool to
generate synthetic patient data. This tooling provides output in the
FHIR formats and C-CDA. Our command-line tooling provides an
interface to generate a file using Synthea and use that to compare
the FHIR implementations.

3.2.3 Fuzzing. To fuzz the JSON implementations of the FHIR
servers, we mutated Synthea-generated FHIR JSON files. Our mu-
tator keeps the overall JSON syntactic structure while applying
malformations, such as duplicate fields, missing mandatory keys,
and changing the types of various keys. For each input Synthea file,
we generate 100 mutations and run them through the FHIR Garden
to triage them for deeper analysis.

We run these mutated files through the FHIR Garden and the
comparison tools as part of the fuzzing loop. We log the files that
produce differences and triage them manually. These files contain
minor differences, such as the Patient ID, which may be rewritten
from one EHR to another.

3.3 Chaining FHIR Servers
As stated earlier in the section, one of the goals of the FHIRGarden is
to support chaining and explore howmalformationsmove through a
chain. Our “Game of Telephone” or chaining tool primarily supports
two modes of operations. First, we specify a chain, and the tool will
attempt to import and export a patient record through that sequence.
For example, a chain [vista, vista, blaze, ibm]would import
and export through VistA twice before importing the exported file
through Blaze and finally through IBM.

Second, we support a depth-first search operation where we
explore all possible paths up to a certain path. This mode lets us
find differentials and when they stop getting imported into systems.
Figure 4 demonstrates how our tooling sends POST requests and

GET requests sequentially to understand how a specific FHIR server
interprets patient data.

4 Findings
As part of our study, we reported three broad categories of findings.
First, the support for the Consolidated CDA format in OpenEMR
was insufficient, with several vulnerabilities in their implementa-
tion. Second, although the FHIR standard adds some additional rules
to the JSON format, these additional constraints are often ignored.
Finally, we found that there are numerous unauthenticated FHIR
servers on the Internet. Several of these servers seem to contain
Synthea-generated data or to be hosting honeypots that contain
other vulnerable services.

4.1 OpenEMR cannot import CCDA XML files it
exported

OpenEMR implements a FHIR REST API and a native REST API.
The FHIR REST API, however, does not implement functionality
to import FHIR data. Instead, OpenEMR imports and exports C-
CDA Continuity of Care Documents (CCDs). These files can be
uploaded and exported from the web interface, and the FHIR REST
API supports exporting these CCD XML files. We followed these
steps: (1) Import a Synthea-generated XML file, (2) Export the CCD
file fromOpenEMR, and (3) Import the exported file again. However,
we observed that OpenEMRwould not import these files. OpenEMR
would respond with an HTTP 500 error message (Internal Server
Error). Upon inspecting the OpenEMR code, we noticed that they
use two XML libraries (SimpleXML and xmljson), creating more
possibilities for parser differentials.

The OpenEMR team fixed these bugs promptly after our three
bug reports on April 13th 2024, April 27th 2024 and May 1st 2024.3

3https://github.com/openemr/openemr/issues/7417

https://github.com/openemr/openemr/issues/7417
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Figure 4: FHIR Garden’s Game of Telephone compares patient EHR as it passes through chains of FHIR servers

4.2 Data Integrity not entirely maintained while
parsing EHR in OpenEMR

Maintaining the integrity of patient medical health records is es-
pecially important while handling them. Subtle differences were
observed between the imported patient files stored in OpenEMR,
which were identified when importing the Synthea C-CDA XML
file to OpenEMR and then exporting the same data. Firstly, time
and timezone information was stripped from the timestamps. The
DateTime format was simplified to just displaying the date, which
could pose an issue for events where the exact time is critical. Next,
we observed changes in the vaccine descriptions; for instance, short
names of vaccines were used in the original file, and these were
transformed to their full names on export. Such transformations
could affect the consistency and reliability of patient health records
handled within OpenEMR.

4.3 Decimal Value Precision
When we supplied FHIR JSON files containing decimal values, we
noticed that the underlying JSON implementations introduced some
differences in the exported files. For example, the FHIR specification
states the following about decimal values and their precision.4

“The precision of the decimal value has significance:
e.g. 0.010 is regarded as different to 0.01, and the orig-
inal precision should be preserved
Implementations SHALL handle decimal values in
ways that preserve and respect the precision of the
value as represented for presentation purposes.”

For example, if you consider the input 14+2 in Table 4, we see
that the Clojure, VistA, and Java’s Jakarta and FasterXML parsers
interpret and store the value as is, whereas the Python JSON parser
converts it to a floating point notation of 100.0, and the PHP parser
converts it to an integer (100).

We also found discrepancies in how large integers are handled
by FHIR implementations.

“A signed integer in the range −2,147,483,648.. 2,147,483,647
(32-bit; for larger values, use decimal)”

While most implementations handled it correctly, when we used
numbers larger than 14+19, OpenEMR at first converted it to this

4#� used in the tables in this section denote “No Change.”

exponent notation, but for values larger, it converted the numbers
to an empty string instead.

The FHIR specification explicitly disallows the use of certain
special values common in storing decimal values in JSON: INF,
-INF, and NaN.

“For decimal values, the XML special values INF, -INF
and NaN are not allowed, and JSON is restricted to
the precision limits documented in XML schema for
xs:double and xs:decimal icon”

As shown in Table 4, we found that GNU Health’s Python JSON
parser converts the integer to the value “Infinity,” which is prohib-
ited in the JSON and FHIR specifications, whereas OpenEMR and
OpenMRS converted them to strings.

4.4 String Encodings
Table 5 shows the differences in string encoding identified across the
JSON implementations used in these FHIR servers. We found that
most of these differences pertain to interpreting unicode characters
differently. The VistA implementation is built using the MUMPS
programming language, and the web server is hand-written. The
behavior followed by the VistA JSON implementation diverges the
most from the others. For example, unescaped unicode characters
present a parsing challenge: VistA was the only implementation
that did not throw an error when encountering these.

4.5 Syntactic Errors
In addition to the decimal precision errors and string interpretation
errors, we also identified differences arising from syntactic errors,
primarily in the VistA implementation of the JSON specification.
Table 6 discusses these differences in detail.

Bad keywords. Keywords such as, TRUE, tRUTH, and trueasdf
are all incorrect and do not map to the “true” boolean field in the
JSON specification. However, VistA converts these values to “true”
or “trueas” in the last case.

Malformed Arrays. Arrays such as the following, [1, 2 3 4,
5] is interpreted as [1, 4, 5], skipping multiple values that are
missing preceding commas. Similarly, an array of the form [truth,
NaN, fals, True, nul] contains all 5 elements that are supposed
to be special values. However, all of these values are incorrect.
VistA encapsulates each of these values in a string to translate
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value Blaze gnuhealth HAPI IBM FHIR OpenEMR OpenMRS VistA
1.000 NC 1.0 NC NC 1 1.0 NC
1e+2 NC 100.0 NC NC 100 100.0 NC

1e+100 NC NC NC NC NC NC parse error
1e+1000 NC Infinity NC NC “” “Infinity” parse error

1 w/ 19 zeros NC NC NC NC 1.0e+19 NC NC
1 w/ 309 zeros NC NC NC NC “” NC NC

Table 4: Integer and floating point encoding differences

value Blaze gnuhealth HAPI IBM FHIR OpenEMR OpenMRS VistA
“\\u0000” NC NC NC NC NC NC removala

“é” (2 byte utf-8) NC NC NC NC NC NC NC
“é” (e + 2 byte overlay  ́) NC NC NC NC NC NC e + garbageb

“😆” NC NC escaped unicode NC NC escaped unicode otherc
String w/ tab error error error error error error escape value

Invalid escaped “unicode” valued error error error error error error removal of \u
Unescaped \ in string error error error error error error removal of \

\uDFAA (second surrogate on it’s own) “?” error NC utf-8 conversion error NC removal
Invalid second surrogate \uD888\u3210 error “?”e escape, convertf convert to utf-8g error escape, convert removal

aRemoval if first character in string, otherwise it adds a null byte to the string at the same position.
bFirst byte of character followed by \u-escaped second byte

cFirst byte unchanged remaining bytes formatted as separately escaped values.
de.g. “\uqqqq”

eFirst two bytes become “?” then converts remaining bytes into utf-8 encoding
fKeep \uD888, encode remainder as utf-8

g\xed\xa2\x88\xe3\x88\x90. It is unclear how the first 3 bytes are calculated.
Table 5: Unicode and string encoding differences

value Blaze gnuhealth HAPI IBM FHIR OpenEMR OpenMRS VistA
characters after object or array error error error removal error removal removal
Object w/ “,” after key & not “:” error error error error error error convert to key/value

Object with missing keya error error error error error error removal of valueb
Array with extra commas error error error error error error removal

Array with missing commas error error error error error error partial removalc

{null, true, false} as key error error error error error error partial removald
Other non-string value as key error error error error error error partial removale

Bad value: TRUE error error error error error error convert to true (boolean)
Bad value: falsE error error error error error error convert to false (boolean)

Bad value: tRUTH error error error error error error convert to “trut” string & partial removale
Unquoted asdf as value error error error error error error partial removale

Unquoted trueasdf as value error error error error error error convert to “trueas” & partial removale
“String” in single quotes error error error error error error partial removale

Unclosed object error error error error error error close object
Unclosed array error error error error error error close array

ae.g., {“a”:1, :2, “c”:3}
be.g., returns {“a”:1, “c”: 3} from above example

cRemoves values up to that proceeding the next comma or end of array. E.g., [1, 2 3, 4] becomes [1, 3, 4]
dParse error if first key is one of these values otherwise key’s value assigned to previous key. E.g., {“a”: 1, true: 2} becomes {“a”: 2}

ereturn everything parsed up to that point, with balanced brackets
Table 6: Syntax errors and differences between FHIR JSON implementations

it to the array ["truth", "NaN", "fals", "True", "nul"]. No
other FHIR server presents these behaviors.

Building an exploit chain.We leveraged the array misinterpre-
tation vulnerability in the VistA system to create a FHIR JSON file
where commas were replaced by whitespaces. This change ensures
that a file containing a patient’s complete record is only partially
imported by VistA and can be successfully imported into other
FHIR servers with reduced patient records.

Null values as object keys. In addition to arrays, VistA also al-
lows for some malformations in objects. For example, “null”, “true”,
and “false” are keywords in the JSON format. However, these key-
words are allowed in the VistA implementation inside JSON objects
as keys, but the parser skips over the associated value. For example,
an object with the syntax {"a":1,null:2,"b":3} is interpreted as
{"a":2,"b":3}. VistA allows the use of “true” and “false” similarly.
This is incorrect behavior. However, we have not been able to show
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that this vulnerability can be exploited to affect a patient’s EHR
inside VistA.

4.6 Unauthenticated FHIR Servers
We found that a large portion of FHIR servers identified on
Shodan [18] (Table 1) were accessible without any authentication at
all. We searched on Shodan using the search queries “FHIR,” “Open-
EMR,” “HAPI FHIR,” and “SmileCDR.” Upon closer inspection of the
Shodan results of these servers, it is hard to differentiate between
Honeypots, servers hosting test data from Synthea, and legitimate
patient data accidentally exposed on the Internet. We responsibly
disclosed the potential leaks to the government agencies.

The SMART-on-FHIR standard [6, 17, 22] specifies how authen-
tication and layers of security can be added to a FHIR server. This
protocol allows a user to register a client with an asymmetric cryp-
tographic key pair. This key pair can then be used to receive an
authorization token, which is refreshed with every request. The
FHIR Garden GitHub repository contains an implementation of the
Smart-on-FHIR protocol to interact with servers that support and
enforce it. However, in practice, we found that many open-source
servers do not enforce the requirement by default and will respond
to public requests for all patient data.

5 Conclusions
This paper presented a novel tool, the FHIR Garden, to allow re-
searchers and healthcare software developers to compare FHIR
implementations and find parser differentials at scale. The FHIR
Garden can help reduce attack surfaces arising from supporting
interoperability protocols and HIEs. In search of interoperability
issues, we have identified 59 differences in JSON implementations
and other interoperability protocol errors in OpenEMR.
Future Directions. Our FHIR Garden implementation can be fur-
ther improved in several directions. We wish to pursue coverage-
guided fuzzing as a natural next step to find deeper vulnerabilities
and differences between implementations [14]. Since FHIR imple-
mentations support Turtle and XML formats in addition to JSON,
we would also extend the FHIR Garden tooling to compare the out-
puts of the FHIR implementations across different output formats
to search for further parser differentials.
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