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Abstract. Human understanding of protocols is central to protocol
security. The security of a protocol rests on its designers, its imple-
mentors, and, in some cases, its users correctly conceptualizing how it
should work, understanding how it actually works, and predicting how
others will think it works. Ensuring these conceptualizations are correct
is difficult. A complementary field, however, provides some inspiration
on how to proceed: the field of language-theoretic security (LangSec)
promotes the adoption of a secure design-and-development methodol-
ogy that emphasizes the existence of certain computability boundaries
that must never be crossed during parser and protocol construction to
ensure correctness of design and implementation. We propose supple-
menting this work on classical computability boundaries with exploration
of human-computability boundaries. Classic computability research has
focused on understanding what problems can be solved by machines or
idealized human computers—that is, computational models that behave
like humans carrying out rote computational tasks in principle but that
are not subject to the natural limitations that humans face in prac-
tice. Humans are often subject to a variety of deficiencies, e.g., con-
strained working memories, short attention spans, misperceptions, and
cognitive biases. We argue that such realities must be taken into con-
sideration if we are to be serious about securing protocols. A corol-
lary is that while the traditional computational models and hierarchies
built using them (e.g., the Chomsky hierarchy) are useful for securing
protocols and parsers, they alone are inadequate as they neglect the
human-computability boundaries that define what humans can do in
practice. In this position paper, we advocate for the discovery of human-
computability boundaries, present challenges with precisely and accu-
rately finding those boundaries, and outline future paths of inquiry.

1 Introduction

Humans are integral to the conception and operation of protocols. They lay out
the initial vision, create the specification, implement the protocol, and wittingly
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or unwittingly make use of it. Due to humans’ close and varied interactions with
protocols during their design, development, and operation, we must - if we want
to secure protocols - account for humans’ intrinsic limitations in understanding
protocols.1

The genesis of a protocol vulnerability often lies in some human failure or
deficiency, e.g., the copy-and-paste blunder that produced the Apple goto fail
vulnerability [16]. The designer may introduce mistakes or create the specifi-
cation under incorrect assumptions. Or the implementor may fail to correctly
conceptualize the specification, e.g., due to cognitive constraints. Or perhaps
the user may misunderstand the protocol, driving them toward behaviors that
jeopardize security. (While some may not consider the previous example to be
a protocol vulnerability, it has the same form as one; it is a predictable failure
of the protocol design-and-development process, which can be used as a reliable
conduit for attack.)
Our thesis is that a whole class of vulnerabilities could be averted if we
better understood human limits to computability and took a principled
approach to protocol design and development grounded in such an
understanding.

In the remaining sections of this paper, we: discuss Turing’s notion of com-
putability; provide a brief primer on the field of language-theoretic security
(LangSec), which informs our work; present the idea of complementing LangSec
with the incorporation of human-computability boundaries; discuss challenges
in defining human-computability boundaries and follow-on work; discuss related
work; and conclude.

2 The Human Computer

Today, Turing machines are often thought of as computational models for
modern-day electronic computers; however, Turing very much had humans in
mind during his conception of the Turing machine. As Jack B. Copeland points
out in his discussion on the Church-Turing thesis:

“Turing introduced his machines with the intention of providing an ide-
alized description of a certain human activity, the tedious one of numeri-
cal computation. Until the advent of automatic computing machines, this
was the occupation of many thousands of people in business, government,
and research establishments. These human rote-workers were in fact called
computers. Human computers used effective methods to carry out some
aspects of the work nowadays done by electronic computers. The Church-
Turing thesis is about computation as this term was used in 1936, viz.
human computation[.]” [7].

1 While the discussion in this paper focuses on protocols, the notion of human-
computability boundaries is certainly applicable more broadly.
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In Turing’s seminal paper [22], in which he proved the Entscheidungsproblem
is not, in general, solvable, he also introduced the Turing machine, along with
the notion of computability. Turing wrote, in the paper, that: “Computing is
normally done by writing certain symbols on paper. We may suppose this paper
is divided into squares like a child’s arithmetic book.” In the same paper, Turing
uses “the fact that the human memory is necessarily limited” as justification for
the finite state property of Turing machines.2

Despite Turing’s inspirations to model human computation, Turing machines
are not adequate in fully capturing all aspects of human computation in protocol
and program design, development, and use. It was never meant to do this. The
Turing machine was a computational model that dealt with an ideal - a human
in principle, not in practice. More importantly, human computation at the time
was envisioned narrowly as rote processes carried out by humans. It was never
intended to capture how humans design, develop, conceptualize, and use com-
puter programs and protocols, in the fashion they do today. While we still have
human computation in the present day, the role of humans and the tasks they
perform are fundamentally different—and any computational models we use to
capture human computation must reflect this reality.

3 LangSec and Computational Models

Language-theoretic security (LangSec) [5] incorporates the theoretical insights
offered by language theory, automata theory, and computability theory into a
design-and-development methodology that averts common pitfalls responsible
for producing numerous protocol and parser vulnerabilities. It advocates sep-
arating the parser from the execution environment, modeling the parser as a
formal grammar, ensuring the grammar does not exceed certain computability
boundaries on an extended version of the Chomsky hierarchy, and ensuring that
the parser is a recognizer or more precisely a decider, i.e., it rejects all bad inputs
and accepts all good inputs. In essence, LangSec tells us how to design protocols
and parsers based on our understanding of the limitations of machines. That
is not to say that LangSec does not acknowledge or address human causes of
protocol and parser vulnerabilities. On the contrary, Bratus et al. in their dis-
cussion of exploit programming [6], note that many exploits are manifestations
of incorrect computability assumptions. LangSec aims to rectify these assump-
tions within the design-and-development process. Furthermore, successful appli-
cation of LangSec principles requires reducing human error. For example, the
parser combinator toolkit Hammer [17] helps eliminate user error by assisting
the implementor in creating a parser that matches the specification grammar.
We contend that, while LangSec is vital and has made great strides toward secur-
ing protocols, it alone is insufficient. Specifically, there is a limit to what can be
achieved by considering traditional computability boundaries alone. (Of course,
one might argue this would not be a problem if we could eliminate the human
2 We note that not everyone held this view. For example, Shagrir provides discussion

on Gödel’s rejection of this assumption [19].
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from all parts of the protocol life cycle—including design, development, and use;
as far as we can tell, we’re not quite there yet.)

We propose supplementing the field of LangSec with work that explores
human-computability boundaries. Classical computational models, such as the
Turing machine are excellent for capturing what machines can do; however,
they are generally not well-suited for capturing what actual humans can do
with and especially without aids. In practice, humans have finite memories—
and often inadequate knowledge to understand protocol workings in comparison
to machines. They have short attention spans. They are subject to cognitive
biases and often make mistakes in reasoning in predictable ways. These deficien-
cies manifest in bugs during protocol and parser conceptualization, coding bugs,
and user error, all of which endanger security.

We argue that we must acknowledge these human deficiencies, understand
why and how they occur, develop solutions to begin addressing them, and finally
we must update our protocol and parser design-and-development processes in
accordance with such findings. We hope this initial position paper will lay some
groundwork for further inquiry that helps in securing protocols and parsers.

4 Human-Computability Boundaries

Using an extended version of the Chomsky Hierarchy that differentiates between
non-deterministic and deterministic pushdown automata, LangSec recommends
staying within either the boundary of Turing-decidability (linear-bounded
automata) or the stricter boundary of parser-equivalence decidability (determin-
istic pushdown automata), depending on the problem at hand. The exact class
boundaries for these decision problems are not part of the five-class extended
Chomsky hierarchy, e.g., the Turing-decidability boundary lies at recursive lan-
guages. The extended Chomsky hierarchy, however, is natural for humans to
interpret and allows sufficient expressiveness to still be useful in the design and
development of parsers and protocols.

Human-computability boundaries—the boundaries that specify what actual
humans can do with the capabilities they possess and the deficiencies they
are subject to—are a different beast altogether. Fitting human-computability
boundaries to an extended Chomsky hierarchy is futile as there exist grammars
within the class of regular grammars—i.e., grammars that can be expressed with
finite state automata—that humans, in general, fail to conceptualize correctly.
We do not know exactly where these human-computability boundaries lie, but
the discovery of them may be instrumental in securing protocols and parsers.
This observation is captured in Fig. 1. The ovals correspond to classes of gram-
mars (or languages or automata) in the five-class extended Chomsky hierarchy.
LangSec boundaries are drawn at linear-bounded automata and deterministic
pushdown automata, whereas the oddly-shaped blob corresponds to a single ide-
alized human-computability boundary. If this boundary were representative
of reality, we would want to constrain ourselves to the intersection of
the blob and the appropriate LangSec computability boundaries during
protocol and parser construction.
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Fig. 1. Human-Computatability and LangSec Boundaries.

In practice, however, things are more complex. We can imagine different
human-computability boundaries corresponding to different human roles and
protocol interactions. We can also imagine fuzzy boundaries where the uncer-
tainty comes from the variance of human attributes over a sub-population. We
might consider human deficiencies of a probabilistic nature and aim to ensure
most users are unsusceptible to a given flavor of attack based on protocol mis-
conceptions; then, we may design and develop the protocol around this aim. If
we know a priori what tools the various actors have at their disposal, the model
we choose and boundaries we choose should take this into account. In short, the
model used to express human-computability boundaries should be rooted in the
protocol at hand, as well as the relevant sub-populations and their capabilities.

5 Challenges and Future Work

In the previous section, we introduced the notion of human-computability bound-
aries and motivated the need for their discovery. However, there are a wide vari-
ety of challenges associated with accurately and precisely defining where these
boundaries lie, developing models to capture them, and utilizing them in prac-
tice. In this section, we briefly touch on these threads and suggest directions for
future research.
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5.1 Determinants of Human-Computability Boundaries

There are many factors that determine where human-computability boundaries
lie, e.g., memory, attention span, dual-process model of cognition, and bounded
rationality [10,21]. However, some of these determinants will have a larger impact
than others and some information will be easier to attain and utilize in address-
ing vulnerabilities that arise from human deficiencies. That is, pragmatically
speaking, the utility of exploring a determinant rests on its salience with respect
to human-computability boundaries and whether the information we can acquire
about the determinant is actionable. The effectiveness of the models that enable
us to determine where human-computability boundaries follows directly from
the determinants we choose.

5.2 Usability Studies

Identifying the determinants of human-computability boundaries is insufficient.
We must also conduct usability studies to understand the interplay between
these determinants, human-computability boundaries, and security. Of course,
this is not a one-way process; usability studies also help with identifying new
determinants, which in turn guide new usability studies.

One example of a genre of usability studies we are interested in involves
collecting concrete metrics for code complexity. Two classes of metrics are based
on: (a) what the programmer can readily observe in the code and (b) what is
represented in the abstract syntax tree (AST) for the program inputs in computer
memory. As we mentioned earlier, program inputs are handled by code called
parsers. Examples of metrics of the first type include lines of parser code and
complexity per line of parser code, e.g., how many atomic structures such as
combinators are used or represented in each line of code (on average or in the
worst line). Examples of metrics of the second type include AST depth, number
of branches, and tree balance.

5.3 Understanding Roles

Drawing useful human-computability boundaries requires understanding which
roles are pertinent, the goals associated with the roles, the tools afforded by each
role, and the interplay between each role and the protocol. Such understanding
must be reflective of the protocol at hand and the application domain. The
protocol and application domain may warrant consideration of additional roles
or sub-roles that we have not discussed.

5.4 Developing Models

We’ve discussed the importance of defining where and how the protocol
is used, determining the roles of the various human actors, identifying the
determinants of human-computability boundaries, and gathering the requisite
data grounded in usability studies to draw human-computability boundaries.



Human-Computability Boundaries 163

The next step is then to incorporate these findings into a model that captures
human-computability boundaries in a way that enables us to reason about the
security of the protocol. It may be infeasible to draw perfect or even close-to-
perfect boundaries for human computability. Understanding some limitations,
however, can go a long way in addressing vulnerabilities.

The power of the model used to capture human-computability boundaries
lies its utility in the design and development of safe protocols. While it may be
infeasible to draw perfect or even close-to-perfect boundaries for human com-
putability, all is not lost. Indeed, it may be better to capture a few limitations
in a manner that enables us to design and develop safe protocols than many
in a way that does not. As we discussed earlier, one inspiration for this paper
was in developing human-computability boundaries that complement LangSec
boundaries. In pursuit of this objective, we may wish to develop models similar
to those of the classical automata, such as Turing machines, to capture these
boundaries. While even these models will not neatly fit within the extended
Chomsky containment hierarchy used in LangSec, they would still be rooted
in automata theory, which is certainly convenient. After all, understanding the
commonality of two models of one type is generally easier than understanding
the commonality of two models of different types.

We note that there has been some interesting, recent work on developing
models for end users (e.g., [1,4,11]) that can assist in safe protocol and program
construction. Another approach might be to extend the compliance budget work
of Beautement et al. [2] to a cognitive budget for human agents.

6 Related Work

Jeanette M. Wing expounded on computational thinking as an essential mind-
set that everyone would benefit from, thereby providing a strong pedagogical
basis for incorporating computational thinking into college and pre-college cur-
ricula [24]. She writes:

“Stating the difficulty of a problem accounts for the underlying power of
the machine—the computing device that will run the solution. We must
consider the machine’s instruction set, its resource constraints, and its
operating environment.” [24]

This mindset is crucial in efficiently solving problems on machines. In this
paper, we argue for a parallel notion: Just as we must understand the com-
putational capabilities of the machines that humans use, we must understand
computational capabilities of humans as they interact protocols and programs,
e.g., as they conceptualize and reason about code during development.

For completeness, we note that in recent years, human computation has devel-
oped into a field in its own right, e.g., [14,18,23]. The work in this field, however,
is largely tangential to our work in this paper. Our interests are in developing
an understanding of human-computability boundaries as they pertain to secure
program and protocol design, development, and use. That said, in the past two
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decades, there has been some exciting research efforts to capture humans in
protocol and parser design. Below, we touch on a few particularly relevant ones.

In 2007, Carl Ellison [8] presented the notion of ceremony 3 as a natural exten-
sion to the network protocol. A ceremony incorporates everything conventionally
thought to be out-of-band to the protocol, e.g., UI interactions, human-human
interactions, provisioning tasks. This holistic view of the protocol as a cere-
mony enables the security practitioner to better conceptualize and analyze pro-
tocol security. Since then, researchers have expanded on the idea of ceremonies.
Notably, Bella and Coles-Kemp [3] pursued a formal model of security cere-
monies with multiple layers: information, operating system, human-computer
interaction, personal, and communal.

Johansen et al. [11] argued for the development of a new discipline, Behav-
ioral Computer Science, lying at the intersection of behavioral sciences, ubiq-
uitous computing and Internet of Things (IoT), and artificial intelligence. This
discipline blends the study of HCI, modeling, and the notion of computational
trust. The authors argue we must rethink the rational agent models often used for
human behavior by acknowledging that: differences exist between humans’ expe-
rienced utility, predicted utility, and remembered utility [13]; humans employ
the dual-process model of cognition wherein they may invoke either a fast,
knee-jerk, intuitive, and automated response or a slower, deliberate, rational
response [12,20]; and humans are subject to all sorts of heuristics that affect
their judgements [9]. The authors then discuss approaches to building models
that capture this complexity, grounded in the Bella-Coles-Kemp model discussed
earlier [3].

Basin et al. [1] studied the security of protocols in the presence of human
error. They developed a formal model that includes human agents whose behav-
ior may deviate from the behavior assumed by the protocol specification. They
captured human error using two approaches: (1) a skilled human approach that
begins with an infallible human agent who knows the protocol specification and
modifies it to allow for a small number of mistakes; (2) a rule-based approach
that begins with an untrained human that does not know the protocol spec-
ification and imposes a set of rules upon human agent behavior that dictate
permissible behaviors. They then demonstrate how these two approaches can be
used to formally model fallible humans with the Tamarin verification tool [15].
They also do a case study to show how this modeling approach can be used to
discover human-based vulnerabilities in a protocol, and they use the model to
compare different authentication protocols.

The most relevant work we’ve seen to our paper is by Blum and Vempala [4].
They proposed a model of human computation for end users in studying the secu-
rity of protocols. They argued that traditional notions of computability cannot
blindly be applied to humans and that, instead, human computational models
must take into account the reality that human processing power is inferior to
that of computers. They argued that human computation occurs in two dis-

3 As noted by Carl Ellison: “The term ‘ceremony’ was coined for this purpose by Jesse
Walker of Intel Corporation.” [8].
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tinct phases: a pre-processing phase and a processing phase. Accordingly, they
developed a model for human computation—a variant of the Turing machine—
and introduced the notion of a schema to be the human analog to a computer
algorithm. Finally, they applied this model to different problems. Our paper cer-
tainly has some overlap with this work. However, we explore notions of human-
computability boundaries more generally. We are also not solely concerned with
users; we also focus on human designers and implementors. Last, we are inter-
ested in combining models of human computability with traditional computabil-
ity models.

7 Conclusion

We argued that security rests, in large part, on acknowledging and account-
ing for human deficiencies in the design and development of network protocols.
Existing LangSec work highlights theoretical computability boundaries along the
extended Chomsky hierarchy for which the decidability and parser equivalence
decidability problems are solvable. Accordingly, recommendations to stay within
these computability boundaries along with tools and other LangSec develop-
ments are valuable in guiding secure protocol and parser construction. However,
as we argue in this paper, they alone are insufficient. We discussed the notion
of human-computability boundaries, highlighted the difficulty in understanding
and defining them, and discussed open challenges for future work.
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