Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

I am Joe's Fridge: Scalable Identity in the Internet of Things 9th IEEE International Conference on Internet of Things

Prashant Anantharaman¹, Kartik Palani², David Nicol², Sean W. Smith¹

¹Dartmouth College, USA

²University of Illinois at Urbana-Champaign, USA

December 2016

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

This Talk

Introduction

The Problem

Tools

Approaches

Evaluation

Conclusion

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

3.5

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Section 1

Introduction

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

< A >

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

The consumer-side smart grid

- Massive number of devices talking to each other.
- The talking has to be meaningful so who is talking?
- Impersonation is always a threat!
- In the vision of consumer-side smart grid, every house would have a smart meter.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

The smart meter as the gateway

- Meters know about occupancy of houses and can turn off devices.
- Real-time pricing.
- Demand-response signals to help ease stress on the grid.
- Communicate with gateway devices like Bidgely to get more detailed bills.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Auxiliary communication

- Receive software updates from its manufacturer.
- Send repair diagnostics to the manufacturer, to aid in quick fixing of the appliance.
- Devices communicate with the utility (through the smart meter) to receive commands.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Electric vehicles

- Charging station and car need to authenticate each other.
- Infrastructure needs to authenticate the car for billing.
- Charging can be scheduled in case of differential pricing.
- The electric vehicles draw more power than many standard households, and hence coordination is needed to help a meltdown.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Section 2

The Problem

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

3.5

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Overview

- What attributes do listeners need to know?
- Who is in a position to witness these attributes?
- How would the binding of attributes happen?
- What happens when these bindings change?

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Attributes

- A simple unique global identifier does not suffice to tell relying parties what they need to know. e.g. IPv6 address – we still need a DNS along with other semantics.
- When appliances talk to each other, does a peering (a communication channel) relationship exist between the appliances? Is the appliance of the correct type?

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Lifetime

- An attribute can be formalized as a tuple (P, O, Δ) .
- Property *P* holds for the object *O*, for time Δ .
- Someone present at the manufacturing location of the device, or the sales location of the device can make these assertions.
- But how does a relying party know this witness is in a position to make this assertion?

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Example

Joe's Fridge of type X

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

э

< ロ > < 同 > < 回 > < 回 >

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Example

Joe's Fridge of type X

Who would be the witnesses here?

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

医下口 医下

< 6 >

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Example (contd.)

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

< A >

3 N

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Example (contd.)

Who said it was the meter?

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion
Example	(contd.)				
					L
ſ			Manufacture and Utility company together certify that the meter belongs to	er Manufacturer of Smar	t Meter
	< Says this	s fridge is Joe's			

Smart Meter

Joe's Fridge of type X

Utility Company

< ロ > < 同 > < 回 > < 回 >

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

э

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion
Example	(contd.)				
					L
ſ			Manufactur and Utility company together certify tha the meter	er / Manufacturer of Smarl t	Meter
1	Says this	s fridge is Joe's	belongs t)
			Smart Meter		

Joe's Fridge of type X

Utility Company

What about the type of the fridge?

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Example (contd.)

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Section 3

Tools

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

< ロ > < 同 > < 回 > < 回 >

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

PKI

- Each entity would have matching public key and private key, and an entity can issue a digitally signed certificate asserting something about the public key of another entity.
- Any relying party who knows the CAs public key (trust root) can verify a certificate.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Macaroons

A macaroon consists of a

- public parta random nonce and a set of additional data elements called caveats.
- private partthe HMAC value generated with a symmetric key on the public part.

I am Joe's Fridge: Scalable Identity in the Internet of Things

きょうくきょ

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Overview

Each entity would need two kinds of identity.

- Core identity This would tell us that an appliance is of a particular type.
- Association attribute This would tell us who or what an appliance is associated with.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

PKI-based Approach

- A trust root certifies a CA at a utility and a manufacturer.
- Utilities issue certificates to the meters, and manufacturers to the appliances.
- Smart meters issue attribute certificates to co-located appliances.
- An appliance shows up in a house, presents a certificate and proves its knowledge of the private key.
- The smart meter checks the validity, and grants an attribute certificate to associate it with the meter.

きょうくきょ

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Macaroons-based Approach

- A trust root issues an introduction macaroon to both the utility and the manufacturer.
- Utilities and manufacturers issue macaroons to the smart meters and appliances respectively.
- Smart meters issue short lived macaroons to the appliances in the same house.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Experiments

We performed our experiments on -

- Smart Meter Research Platform TI MSP430 with Zigbee RF chip.
- Raspberry Pi 2 900 MHz 32-bit quad-core, 1GB RAM (shared with GPU).
- GNU/Linux Server with a 3 GHz Intel Xeon CPU running at 1GB of RAM.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

PKI-based Approach

Table: Varying RSA modulus length, Elliptic Curve Ed25519 key size and DSA key size for PKI Attribute Certificates on the Server – 3GHz with 1GB RAM.

Protocol	Key length	createAttrCert	verifyAttrCert
RSA	1024 bits	40.26 ms	0.10 ms
RSA	2048 bits	253.61 ms	0.40 ms
RSA	4096 bits	1635.65 ms	1.43 ms
DSA	512 bits	19 ms	100 μ s
DSA	1024 bits	82 ms	310 <i>µ</i> s
Ed25519	256 bits	197 μ s	226 μ s

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

PKI-based Approach

Table: Varying RSA modulus length, Elliptic Curve Ed25519 key size and DSA key size for PKI Attribute Certificates on the Raspberry Pi 2.

Protocol	Key length	createAttrCert	verifyAttrCert
RSA	1024 bits	4.85 s	1.91 ms
RSA	2048 bits	24.06 s	8.33 ms
RSA	4096 bits	189.07 s	30.91 ms
DSA	512 bits	1.01 s	7.86 ms
DSA	1024 bits	1.34 s	10.36 ms
Ed25519	256 bits	25.79 ms	29.34 ms

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Macaroons-based Approach

Table: Varying cryptographic hash functions for an implementation of Macaroons on the Server – 3GHz with 1GB RAM.

Hash Algorithm	createMacaroon	verifyMacaroon
MD5	98 μ s	79 μ s
SHA-1	100 μ s	80 μ s
SHA-256	110 μ s	85 μ s

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Macaroons-based Approach

Table: Varying cryptographic hash functions for an implementation of Macaroons on Raspberry Pi 2 and Smart Meter Research Platform.

Hash Algorithm	createMacaroon	verifyMacaroon
Raspberry Pi		
MD5	650 μ s	473 μ s
SHA-1	662 μ s	513 μ s
SHA-256	761 μ s	566 μ s
TCIPG research		
platform		
SHA-1	900 μ s	780 μ s
SHA-256	1.2 ms	870 μ s

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Section 6

Conclusion

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth

- A - E - N

< E.

Image: Image:

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Conclusion

- We explored identity issues in the smart grid.
- We proposed two possible schemes for this problem.
- We noted that a macaroons based scheme is expected to scale more reliably for the number of data points in the envisioned smart grid, by putting decentralisation and symmetric key ciphers into practice.

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Next Steps

Much of our future work includes exploring the following.

- For what population sizes and revocation patterns would X.509 stop working?
- Would Macaroons still suffice in such situations?
- How would resource-constrained devices fair with respect to generating strong keys in terms of entropy?

Introduction	The Problem	Tools	Approaches	Evaluation	Conclusion

Thanks!

pa@cs.dartmouth.edu http://cs.dartmouth.edu/~pa

This material is based upon work supported by the Department of Energy under Award Number DE-OE0000780. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

I am Joe's Fridge: Scalable Identity in the Internet of Things

Dartmouth