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23.1 Introduction

At the core of design lies intent, or the primary goals and objectives that drive the
creation and usage of a technology. However, there are often multiple actors
involved with a technology’s production, all with their own ideas about intent.

• The designer has some idea of what their product should do and how it should
do it.

• The developer produces code to realize their own interpretation of the designer’s
intent.

• The user uses the product according to their own intent, which may or may not
match those of the designer and developer.

This chapter examines the role of intent when it comes to security. The security
of a technology stems from how closely the intents of its designers, developers, and
users align, as well as whether these intents reflect reality. However, ensuring that
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these intents align and match reality can be difficult or even impossible. Designers
tend to explicitly define the functionality of their technologies, but their security
intent is often implicit and conceptualized in vague terms like “only legitimate
users will be able to authenticate.” This oversight is not intentional; rather, the
designer lacks the proper tools to think through the security implications of their
design decisions. Developers must then translate these vague notions into code,
and their decisions may not align with the designer’s mental model. Finally, users
have their own goals and intentions; their focus is often on accomplishing their
primary task rather than ensuring the system remains secure. As they are the final
arbiters of how the system operates, their decisions have the most impact on the
system’s security, and their usability-centered choices can override the designer’s
and developer’s security intentions.
Intent mismatches have caused many of the most severe and prevalent vulner-

abilities, and this trend is continuing in the Internet of Things (IoT) era. The
Mirai botnet [1], which utilized buffer overflows to infect routers, demonstrates
one such vulnerability. Inadequate input validation on routers violated the
designer’s assumption that only properly formatted input would be accepted.
Another example involves the first variant of the Spectre vulnerability [2], which
demonstrates a mismatch between the intents of the processor designer and the
operating system developer. Speculative execution of program instructions vio-
lated the developer’s assumption that certain code branches would never be exe-
cuted and should therefore leave no trace in the system hardware. Unchanged
default passwords are a mismatch between developer and user intent; developers
intend for users to create secure passwords once they start using the system,
whereas users may not do so as they are reluctant to change anything
once the system is running – and in some application scenarios, users even
depend on well-known default passwords for system availability during crisis
situations.
The unique nature of the IoT exacerbates the security ramifications of these

intent mismatches. Almost by definition, the IoT brings computing to physical-
world devices that have historically lacked such computational capabilities, thus
merging previously separate design goals. Inexperienced designers who lack ade-
quate security background or training may be thrust into the role of bringing their
revolutionary vision to fruition. A lack of standards and conventions means many
developers will develop ad-hoc protocols or put together makeshift devices that
satisfy the demands of their use case without giving security adequate considera-
tion. The unprecedented scale of the IoT presents an additional challenge. For
example, when users do not change their default passwords, millions of unsecure
devices could be compromised to create a massive botnet. These challenges render
traditional security assumptions and models obsolete, requiring us to create new
approaches suitable to the current landscape.

530 23 Intent as a Secure Design Primitive



In this chapter, we present two emerging security paradigms we have helped
develop to preserve designer and developer intent.1 The growing field of
language-theoretic security (LangSec) provides a theoretical foundation, as well as
the machinery, to ensure that devices only accept developer-intended inputs, thus
protecting thesedevicesagainstamyriadof input-validationbugs.LangSecposits that
input recognizers must be built from the formal specification of a protocol, and the
recognizer must adopt a language-based approach to accept valid input while reject-
ing all invalid input without performing additional computation. LangSec compels
the developer to contemplate the input language of the protocol being designed
and implemented. Separately, ELF-based access control (ELFbac) empowers the
developer to specify access control policies for their programs at a natural level of
granularity, the application binary interface (ABI). ELFbac allows the developer to
codify their intent by creating policies for intra-process memory isolation. Together,
these techniques help to reduce the incidence (the purview of LangSec) and conse-
quences (the purview of ELFbac) of zero-days, which are more critical in the IoT
wherepatching isharder and the consequences of compromisemaybe sowide reach-
ing.By restricting the input a programcanaccept and thememory it can access at any
given time, these techniques effectively constrain and/or prevent undesirable behav-
ior, forcing the program to conform to the intent of the developer (see Figure 23.1).

Formal

specification

Well-

formed

input

Input

handler

Shared

data

State

transition

Program
semanticsr/w/x

r/w/x

All input

Invalid input

LangSec parser
ELFbac-enhanced

program

Figure 23.1 ELFbac and LangSec both enforce human intent by codifying the
specifications.

1 Preserving user intent is also important, but it is not a focus of this chapter.
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Section 23.2 presents LangSec. Section 23.3 presents ELFbac. Section 23.4
presents an IoT application area where we use the two techniques together.
Section 23.5 discusses how we evaluate implementations, and Section 23.6
concludes.

23.2 A LangSec Primer

The field of language-theoretic security (LangSec) posits that since exploits are
input-driven computations which are unintended by and unknown to designers
and developers, defending against exploits requires taking a principled approach
to input recognition that is rooted in formal language theory and computability
theory. (Security based on programming languages is an orthogonal topic.)
LangSec examines both theoretic and applied challenges with input sanitization

and input recognition that manifest in real-world exploits; it suggests parser design
and implementation best practices, and it even provides a tool that facilitates the
principled development of parsers – all with the goal of preserving designer and
developer security intent.2

23.2.1 What Is LangSec?

The set of acceptable inputs to a system is often not explicitly defined by the devel-
oper, nor is it tested extensively. This leads to invalid input being processed instead
of being rejected, which in turn leads to major bugs such as Heartbleed [3], Shell-
shock [4], and Android Master Key [5]. When a system receives an unanticipated
input, the processing code may drive the system to a state that is unaccounted for
by the developer. LangSec seeks to prevent such vulnerabilities driven by poor
input handling.
At its core, LangSec is the idea that input-driven security exploits can be avoided

by ensuring that the acceptable inputs to a program:

• are well-defined by a language grammar,

• are as simple as possible within the Chomsky hierarchy, and

• can be fully validated by a dedicated parser of appropriate power as defined by
the Chomsky hierarchy.

The idea with LangSec-hardened parsers is to separate the input validation code
of the program from the rest of the code, so that the main program never acts on
input that has not been validated. The set of acceptable inputs is used to define a

2 LangSec offers many other contributions as well, such as identifying anti-patterns. Our focus in
this section, however, is to give the reader an overview of the field.
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grammar for a language. A LangSec parser must simply follow this grammar by
rejecting any non-conforming input and operating correctly on well-formed input.

23.2.2 Exploits Shatter Intent

The designer and the developer often have some notion of what they want their
software to do and not to do. Correct behavior may be explicitly expressed at dif-
ferent points within the design and development process – and it may even be
enforced in the final product. However, it may also be an amorphous, ill-defined,
high-level notion that is assumed, rarely thought about, and never explicitly stated.
Many times, we see something in between, where attempts to express intent are
occasionally made throughout the design and development process, but this intent
cannot be correctly enforced because the designer and developer lack the requisite
knowledge or tools to ensure the security principles they want are achieved in the
software they produce. This is perhaps best exemplified by the anti-pattern of the
shotgun parser [6], which comprises segments of code scattered throughout a pro-
gram that collectively aim to sanitize the input but instead exhibit security vulner-
abilities because input-driven computation occurs before the input is deemed
legitimate or because the parser code is executed at different times and may not
act on a single input as the developer expects. These shotgun parsers demonstrate
that their developer not only intends to protect against bad input, but also that they
expend great effort in pursuing this endeavor; however, despite this effort, shotgun
parsers frequently fail to safeguard the program from malicious-input-driven
exploits, as evidenced by the many exploits seen in the wild that leverage unin-
tended computation enabled by these poorly designed parsers.
Indeed, exploits shatter designer and developer intent – and they do so by design.

A computer exploit is input that is crafted and submitted to a target program to
produce input-driven computation unintended by and unbeknownst to the
designer and the developer [7]. First, the exploit programmer seeks to uncover
unintended computational capabilities offered by the target program. Next, the
exploit programmer identifies and distills these behaviors by determining simple
input constructs that reliably produce them. Finally, the exploit programmer
chains together these input constructs to create the exploit.
We stress that programming an exploit is programming. The basic unit or build-

ing block of an exploit is the “weird instruction,” a gadget or a collection of sequen-
tially executed instructions that collectively performs a useful operation for the
exploit programmer, one that should not be allowed as neither the developer
nor designer intended for such computational capabilities. Once the exploit pro-
grammer discovers and distills unintended behaviors into these weird instructions,
they systematically piece these weird instructions together to create the exploit,
just as, say, an assembly programmer pieces together assembly instructions to
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create an assembly program. The exploit runs on – and therefore serves as an attes-
tation to the existence of – the “weird machine,” a programmable machine har-
bored by the target program that offers the requisite weird instructions to
construct the exploit.3

The exploit will not exist if the weird machine upon which it runs does not exist.
LangSec attempts to prevent the emergence of weird machines.

23.2.3 A Brief Detour into the Theory of Computation

LangSec builds upon the Theory of Computation. Here, we give a very brief primer
of the theory of computation and its branches to provide the requisite language
and machinery to understand the theoretical underpinnings of modern-day
exploits. For the reader who seeks a more complete treatment, we highly recom-
mend Sipser’s book [8].
In formal language theory, an alphabet is a non-empty finite set of symbols.

A string over an alphabet is a finite sequence of symbols belonging to that alphabet.
For example, consider what is colloquially considered the English alphabet:Σ = {a,
b,…, z}. Here, a Σ is a symbol belonging to the alphabet and the word cat Σ∗ is a
string over the alphabet. A language is defined in relation to an alphabet as a set of
strings over that alphabet. A naturalway to express a language is to give a grammar.
A grammar specifies rules, each of which is a mapping from a variable to a
sequence of variables and symbols. A grammar comprises a start symbol alongwith
a sequence of rules. The language of the grammar is simply the language compris-
ing all strings generated by the start symbol. These language-theoretic notions form
the building blocks of automata theory and computability theory – the connection
being what computation is required to “capture” languages. These fields, in turn,
lay the foundation for language-theoretic security.
As suggested by its name, the central focus of automata theory is automata – or

mathematical models of computation – and their capabilities. Core to automata is
the notion of state, which roughly refers to a condition that may dictate a subse-
quent course of action. Automata maintain state, often have some form of mem-
ory, and perform computation on input in its pursuit of some task, such as
generating output or determining whether the supplied input is well-formed.4

The task that we are concerned with in this chapter, which is perhaps the most
common task, is to accept or reject input. The automaton begins in a start state.
The automaton (or perhaps its operator) then repeatedly examines the state
that the automaton is in. Based on that state, it will read symbols from the input
and/or the memory that is part of the automaton, such as a stack or a tape, it may

3 For further discussion of exploit programming, weird instructions, and weird machines, we
recommend reading previous work by Bratus et al. [7].
4 The standard concepts of Deterministic Finite Automata (DFA) and Non-deterministic Finite
Automata (NFA) are just special cases of these machines.
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perform an action such as writing a symbol to memory, and it will transition to the
next state. When supplied with input, the automaton may either run indefinitely
or it may terminate when some condition is met, such as there being no symbols
left to process. If the computation terminates, the state that the automaton is in
during termination determines whether the input is to be accepted or rejected.
That is, the automata we are interested in take as input a string and either accept
or reject the string. An automaton recognizes a language if the automaton accepts
only those input strings that belong to that language. And it decides a language if it
accepts those strings that belong to the language and rejects those that do not
(instead of sometimes merely running forever).
Central to discussion of languages, grammars, and automata is the notion of

expressiveness, which enables us tomeaningfully differentiate classes of a given type.
A language L is consideredmore expressive than a language L if L is a strict superset
of L . Similarly, a class of languages is more expressive than a class of language
if is a strict superset of . Similar notions of expressiveness exist for classes of
grammars and automata, grounded in the languages associated with these gram-
mars and automata. Indeed, this notion of expressiveness intimately links classes
of languages, grammars, and automata, e.g. the grammars corresponding to finite
state automata are regular grammars and the corresponding languages are regular
languages. Moreover, it enables us to develop nested classification schemes such as
the well-known Chomsky hierarchy. We find, for example, that in the Chomsky
hierarchy, finite state machines (and the corresponding grammar and language
classes of regular grammars and regular languages) are much less expressive than
Turing machines (and the corresponding grammar and language classes of unre-
stricted grammars and recursively enumerable languages).
Computability theory and computational complexity theory provide us with a

foundation for understanding the limitations of automata in regard to what they
can do and how efficiently they can do it. Computability theory, in particular, pro-
vides us valuable negative results that inform LangSec.

23.2.3.1 The Halting Problem, Undecidability, and the Equivalence Problems

A particularly well-known, expressive class of automata is Turing machines. Cer-
tain classes of languages are not recognizable using a Turing machine and there
are still more that are undecidable. The classic example of a Turing-undecidable
language comes from the Halting Problem, which involves designing a Turing
machine that accepts all (M, IM) pairs where M is a Turing machine and IM is
an input for which M halts when run on IM and rejects all other Turing machine,
input pairs.
It turns out that while the language of the halting problem, LTM, is not decidable,

it is recognizable. However, Turing-unrecognizable languages also exist; one such
example is the complement of LTM [8]. Recursive languages are exactly those
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languages that are decidable; notably, the slightly less expressive context-sensitive
languages in the Chomsky hierarchy are also decidable.
Undecidability is relevant to LangSec because if an input language is computa-

tionally undecidable, then it cannot be validated – a validation layer will always let
some crafted attack input through. It is also relevant because of the equivalence
problem – determining whether the language of one grammar is equivalent to
the language of another. In terms of LangSec: Do two input validation layers
accept the same input? While this problem is undecidable in the general case
and for many context-free languages, it is decidable for deterministic context-free
languages [9].

23.2.3.2 An Extension to the Chomsky Hierarchy

The well-known Chomsky hierarchy provides a containment classification for
grammars, as well as their corresponding languages and automata, based on their
expressiveness. With LangSec, we are largely concerned with the questions of
decidability that we presented earlier. Hence, we extend the Chomsky hierarchy
in Figure 23.2 by differentiating between non-deterministic pushdown automata
and deterministic pushdown automata, where a crucial barrier lies with regard to
the decidability of parser/grammar equivalence. We also note the barrier of decid-
ability at linear-bounded automata within the hierarchy.
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Figure 23.2 Chomsky hierarchy extended with LangSec boundaries.
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23.2.4 Input Recognition

Sassaman et al. [7] state that “a system’s security is largely defined by what com-
putations can and cannot occur in it under all possible inputs.” A program’s input
drives its control and data flow, and input-driven computation that does not con-
form to the intent of the designer and developer suggests the existence of a weird
machine that an adversary can operationalize to program an exploit. This raises
the question: How do we produce programs that match the intent of the designer
and developer with the end goal of preventing such exploitation? LangSec, in its
pursuit of an answer to this very question, advocates treating the input as a formal
language, making this language as simple as possible, and ensuring that the input
is correctly recognized in accordance with the design specification before permit-
ting input-driven computation.
Ensuring the absenceofunintended input-driven computation is intimately linked

with the objective of secure composition. Sassaman et al. [7] argue that, as composi-
tion is integral to the construction of complex systems, secure composition has
become a colossal security challenge. Modern systems comprise many components
that perform a variety of tasks across different layers, and these components must
be able to talk to one another. The challenge of secure composition lies not only in
securing each of the component parts, but also securing the interfaces, i.e. the glue
that enables communication between these parts. The vulnerabilities underpinning
modern-day exploits often stem from improper input handling at these interfaces.
To secure programs and the interfaces between them, it is imperative that we

harden the parser, the code responsible for input handling. A primary goal of input
handling is to – or, rather, if we are to produce secure code, it should be to –
recognize the input language. That is, we want an input handling routine, a parser,
that only accepts strings that belong to the input language. However, this alone is
insufficient; ensuring recognizability makes no guarantees about whether the
parser will halt on all inputs – and we truly want our parsers to halt on all inputs!
Ergo, what we really want is for the parser to decide the input language, that is, to
accept strings that belong to the input language and to reject strings that do not.
Wemay wish for additional properties from the input language and the parser, e.g.
we may want to satisfy timing constraints, space constraints, or other objectives,
but at a bare minimum, the input language must be decidable.

23.2.4.1 Full Recognition Before Processing

LangSec advocates recognizing the input language – or more precisely, deciding the
input language – before the program performs any (non-parser) computation on
that input. That is, the parser should be separated from the rest of the program
and the parser should reject all invalid input immediately, only allowing valid input
to be passed on to the program internals. This approach is expressed in Figure 23.3.
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23.2.4.2 Principle of Least Expressiveness

The principle of least privilege roughly states that an entity within a system, such as
a user or a process, should operate with the least privilege required to perform the
task at hand [10]. LangSec advocates a similar principle for the design of protocol
specifications or grammars and their parser implementations, the principle of least
expressiveness:

One should always use the least expressive grammar, language, or automaton
that achieves the task.

This principle has the following two implications:

• Protocols should be designed to be minimally expressive.

• Parsers should be no more expressive than is required to decide the languages
specified by the protocols they obey.

23.2.4.3 Principle of Parser Computational Equivalence

Asmentioned earlier, secure composition is one of the leading security challenges.
As such, it’s vital to the security of interfaces. Given two parsers that act on the
same input, those parsers must wholly agree, i.e. for every possible input, either
they both accept the input or they both reject it. The principle of parser equivalence
states:

Secure composition requires any two parsers that should decide the same lan-
guage, e.g., due to sharing a component–component boundary, do decide that
language.

Recall that the equivalence problem is not decidable for non-deterministic
context-free languages and more expressive languages, whereas it is decidable
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Figure 23.3 Full recognition before computation.
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for deterministic context-free languages. When constructing parsers involved in
secure composition, one should, therefore, aim to ensure they are no more expres-
sive than deterministic context-free.

23.2.4.4 Updating Postel’s Robustness Principle

Jon Postel’s robustness principle states, in the context of TCP implementation: “[B]
e conservative in what you do, be liberal in what you accept from others.” [11].
While this may be sage advice in many situations, its misinterpretation has led
to many Internet bugs. In particular, the advice does not account for the active
adversary. While the principle, when read in context, displays understanding of
bugs caused by weak input handling and also states that such a principle must
be applied at every layer of the network stack, protocol implementers and the
implementations, by extension – often mistakenly assume that the input that
one layer passes to another is well-formed and any malformed input is filtered
out at the layer boundary.
Previous work by Sassaman et al. [12] proposes an update to the robustness

principle, which is particularly pertinent to the new network protocols being
developed for the IoT:

• Be definite in what you accept. Clearly stating what language your machine
understands is critical to the security of the device.

• Treat all input as a language that is parsed by an automaton of matching com-
putational power. Also, the recognizer must be generated from the grammar of
the language. Try to keep the language regular or at most context-free.

23.2.5 Incorporating LangSec into System Design and Development

Given the importance of specifying an input language formally at the protocol
design phase, we want to make it as easy as possible for the parser developers –
those people writing production code – to translate the language specification cor-
rectly. This job involves taking a grammar – the description of a language as a state
machine or in prose – and writing code to implement the grammar. In the tradi-
tional workflow, every parser is written by hand using standard code blocks. In
practice, it is difficult to determine that a series of if statements corresponds to
the intended grammar. Any misunderstanding or oversight in reading the gram-
mar on the part of the developer may result in an implementation that does not
match the specification. We see this kind of mistake happen in many real-world
parser bugs like Heartbleed [3] and Android Master Key [5]. In a formal sense,
even a small difference changes the implementation to one for a completely
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different language. Additionally, writing a parser as a series of code blocks involves
performing the entire translation process from scratch every time.
A LangSec solution to this problem is to use a parser combinator tool. The build-

ing blocks of grammars are combinators like concatenation, union, and Kleene
star. A parser combinator tool is just a library that provides these combinators.
In this way, the developer ends up with code that visually looks like the grammar.
Verifying that the implementation matches the specification is trivial and can be
done by inspection. Furthermore, the correctness of each of the combinators can
be verified independently, meaning the developer does not have to worry about
translating the combinators into code correctly – only calling the combinators
as the grammar specifies.

23.2.5.1 Hammer

Hammer is a parser combinator tool written in C with bindings for several other
languages, including C++, Java, Python, Ruby, Pearl, PHP, and .NET. Hammer
provides implementations of all necessary combinators for context-free grammars
and then some!
Future directions include adding a utility to create fuzz data based on the parser

implementation and adding a utility to take a specification such as a state machine
as input and automatically generate a parser (see Table 23.1).

Table 23.1 Syntax and usage of Hammer.

Syntax Usage Semantics

h.ch h.ch(‘a’) Matches a single specified character
token.

h.ch_range h.ch_range(‘a’,’z’) Matches a single token in the
specified character range.

h.uint8 h.uint8() Matches a single integer token.

h.int_range h.int_range(1,16) Matches a single integer token in the
specified range.

h.sequence h.sequence(h.ch(‘a’),
h.ch(‘a’))

Performs the concatenation
operation.

h.choice h.choice(h.ch(‘a’),
h.ch(‘b’))

Performs the Boolean “or”
operation.

h.many h.many(h.ch(‘a’) Performs the Kleene Star operation.

h.optional h.optional(h.ch(‘a’)) Specifies that matching this token is
optional.
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23.2.6 Summary

LangSec provides a theoretical foundation, a body of research, and usable tools for
the design and implementation of protocols and parsers to avert many of the worst
exploits of the modern day. The IoT and the incentive structure that drive both
fledgling and established companies to rush to get broad market coverage have
resulted in more component–component interactions with less focus on secure
input handling. LangSec provides the fix: separate the parser from the remainder
of the program and ensure it matches the specification; ensure parsing is done in
full by the parser and only pass on valid input to the program internals; use the
least expressive computation power necessary; and ensure parser equivalence.
LangSec also delivers a tool in Hammer to facilitate development of parsers that
match their underlying specifications.

23.3 An ELFbac Primer

In this section, we discuss ELF-based access control (ELFbac), a technique for intra-
process memory isolation that can be used to mediate what code can operate on
which data at what times. By allowing the user to express their intent through pol-
icy, ELFbac can protect programs from intent-violating exploits. We provide a
tutorial on designing and enforcing ELFbac policies, and we show how ELFbac
can mitigate existing high-profile vulnerabilities such as the SSH roaming bug
and variant 1 of the Spectre processor bug.

23.3.1 What Is ELFbac?

The principle of least privilege states that the components of a system should have
the most restrictive set of permissions to accomplish their tasks [10]. This level of
isolation limits the exposure of vulnerabilities within a system. For example, a web
browser should not have default access to critical operating system files. In this
way, vulnerabilities in one component do not impact the overall operation of
the system.
With ELFbac, we apply this principle all the way down to the individual code

and data elements within a single process address space. A bug in one library,
the browser uses could trigger functions from other libraries.
Privilege separation is critical to preserving developer intent. However, existing

access control mechanisms do not address such intent. File system, process, or sys-
tem call level policies are not granular enough for processes which may keep their
objects inmemory and never trigger an offending operation until it is too late. Miti-
gations for memory corruption vulnerabilities such as control flow integrity
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operate at finer granularities but do not address a “Trojan horse” attack where a
malicious third-party library mapped to the process address space can read and
manipulate process memory it should not have access to.
To this end, ELFbac preserves developer intent within the address space. We

frame the problem of unintended, intra-process memory accesses involving buffer
overflows or use-after-free as an out-of-type reference problem.We provide a tech-
nique for constructing a type-state system consistent with the existing ABI to allow
developers to express intent.

23.3.2 Why ELFbac?

While several similar memory protection schemes have been proposed in the past,
they do not achieve the granularity of protection that we desire here:

• Standard sandboxing is too coarse-grained for our purposes, as it requires us to
“spawn extra processes or re-engineer code” [13] to achieve the code/data-level
separation we need.

• SELinux [14] extends traditional Unix file protections to define how programs
can interact with other objects, but cannot “protect a process’ data from the
process itself” [13].

• Mondrian [15] allows users to set the read/write/execute permissions to individ-
ual memory segments at the word level, but doing so required additional hard-
ware mechanisms (more registers, a “permissions lookaside buffer”) that are not
currently present in commodity systems.5

23.3.3 Relationships Between Code and Data

A process has code chunks and data chunks. Standard OS controls provide little
protection on what they can do to each other – but the developer certainly has
intended behavior. We would like to have the program development process auto-
matically give us info about what these chunks are and what the developer
intends.
Systems already have standard ways to have an “executable” program file

express the code and data for a given executable, as well as the metadata necessary
for the creation of a process address space. In our work, we focus on the Executable
and Linkable Format (ELF), standard in the UNIX family (although our approach
can easily generalize to other formats). Inherent within the ELF format are specific
rules and conventions that are expected to be followed – for example, code in the
.init section operates only on data in the .ctors section. ELFbac’s key insight
is that ELF sections can be leveraged to encode explicit rules beyond standard ELF

5 Later papers used the Dutch spelling Mondriaan for this project.
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conventions, allowing users to create new sections that contain (i) specific pieces
of code or data, and (ii) policies that govern the interaction between other
sections [13].
To enforce these permissions, however, we must overcome the issue of the

“forgetful loader” [13].When a program is loaded intomemory to be run, its layout
is organized by segments rather than sections. Segments are grouped together
based solely on their read/write/execute permissions, causing section-level
permissions to be discarded and leaving the door open for programmer intent
to be ignored. To get around the forgetful loader, we need a way to maintain
section-level permissions all the way through program execution.

23.3.4 Design

ELFbac utilizes the existing linking and loading process to define policies (via
common linker scripts) for intra-process memory isolation. These policies, as
defined by the developer, consist of a set of rules codifying relationships between
code and data, which are specifically the access controls (i.e. read, write, and
execute permissions). ELFbac code within the Linux kernel then enforces these
policies, via a finite-state machine where each state has a separate virtual memory
context. The operating system kernel utilizes the information within the ELF file
to link, load, and ultimately construct a runtime process.
Enforcement of an ELFbac policy happens in the kernel page fault handler.

Memory accesses that happen outside the current state trigger page faults, which
are then handled to verify if the memory access was valid at the current state or
lead to an error state if the access was invalid.
We treat code and data units equally, and place fine-grained permissions over

these units. We abstract the security-relevant phases of execution of a program into
a finite-state machine (FSM). Permissions to code and data units are specified for
each state, and the methods that trigger transitions are also specified. The permis-
sions can be a combination of read, write, or execute. Sensitive data is placed in its
own memory region, with read access only given when the data needs to be read.
At all other states in the state machine, this permission is rescinded.

23.3.5 Implementation

Our team has built reference implementations for Intel x86 and ARM-based
Linux systems. We believe that migrating ELFbac to other hardware platforms
or similar operating systems should be made easier as portability is built into
the current implementation. Wrappers for all the key kernel primitives were cre-
ated to speed the porting process, so only a minimal set of files need to be
changed.
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Checking the policy by trapping the page fault on every memory access would
cause an unacceptable drop in performance. To prevent this, ELFbac provides its
own cache on top of the usual caching layers. To explain this, we need to first
review how paging operates.
On the x86 platform, mapping is done through the page directory (PD) and the

page table (PT), with each table containing 1024 4-byte entries. Each page direc-
tory entry (PDE) points to a page table, while each page table entry (PTE) points to
a physical address; additionally, any page table lookup is cached by either the
instruction or data translation lookaside buffer (TLB). Since the appropriate
PDE and PTEs are created as needed by the running process and any system calls
it makes, the page table entries serve as a proxy cache for the overarching policy in
force in that memory space.
We add an additional layer of shadow memory where different code sections

get different views of memory based on the policy FSM state. Adding additional
contexts has the danger of “churning” the TLB, which would reduce perfor-
mance; we counter this by filling the shadow contexts in a “lazy” fashion – every
page starts empty and only when we have a valid access do we fill the shadow
memory.
In practice, when the running process accesses an unmapped address, the

Memory Management Unit (MMU) raises a page fault that ELFbac intercepts.
ELFbac checks that the policy allows access and does not cause an FSM state
change, and if true the shadow contexts are loaded so future access in the same
state will not cause a fault. If the access causes a state transition, shadow contexts
for the new state are loaded. The old memory context is unloaded so it can be vali-
dated against the policy on the next access.
Verification of the current state is done at each system call; the policy state can

allow or disallow the call.

23.3.6 Using Mithril to Build Policies

ELFbac policies are written in a Ruby domain-specific language. Mithril embeds
these policies in a separate .elfbac section in the binary, which is then enforced
by the memory management system of the ELFbac enhanced kernel. We imple-
ment a policy for a parser using Mithril.
First, we build a state machine for the entire program. Figure 23.4 shows the

state machine for our program. In the start state, all globals need to be given access
since they are initialized. Following the initialization, we change state to the parser
by invoking the do_parsemethod. The libc state handles access to the globals that
are needed by the libraries. The variable being input by the user, the bytes received
on the socket, the parse-tree built by the parser library, all need to be given access
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in the libc state. This forces the developer to decide on the intentions for all the
global variables and restrict their accesses between address spaces.
Second, we implement the state machine in the ruby-based domain specific lan-

guage to reflect the origin state machine created. For each state, we specify the
code sections that need to be given read, write, or executable access, and do the
same for all the data sections. The function calls that trigger state transitions
are also specified in the policy.
Third, we invokeMithril to add the ELFbac section in the binary. We inspect the

ELF binary to make sure the section was created. We trigger the code-paths that
would violate our ELFbac permissions and cause segfaults. Exhaustive validation
of all the possible state-transitions tells us that the policy is not over-permissive.
The syntax of Mithril involves keywords like: tag, state, start, to, exec,

readwrite and call. Table 23.2 describes of each of these keywords.

23.3.7 How to Use ELFbac

While ELFbac requires some modifications to the OS kernel to enable policy
enforcement, using ELFbac to preserve program intent is a straightforward
process. Much of the work involved in creating an ELFbac policy revolves around
modeling the security-relevant phases of execution of a program as a FSM and
defining how the program transitions between these states at runtime. Here, we
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Figure 23.4 Building the state machine using Mithril.

23.3 An ELFbac Primer 545



give a tutorial on how to design and enforce ELFbac policies that align with devel-
oper intent to prevent vulnerabilities.
ELFbac is most easily applied during the software development process, as the

developer can create the policy based on their existing knowledge of the domain
and the programmer’smental model [16]. At this point, the designer and developer
can work together to determine which pieces of code pose security risks and for-
mulate a policy that isolates these pieces from the rest of the program. While it is
possible to explicitly separate every symbol, function, or library from one another,
not all of these interactions present a security risk. Proper identification of these
risks helps reduce the burden on the policy creator and prevents unnecessary pol-
icy complexity.
Incorporating ELFbac into legacy programs is possible, but may pose more of a

challenge if the original designer and developer are unavailable, as “familiarity
with a codebase is essential to understanding potential areas of vulnerability”
[16]. Therefore, extra care must be taken to understand the code and identify
the pieces of code that need to be isolated [16].
Once the pieces of the program that require isolation are identified, we can

define our FSM with the appropriate states our policy will need to achieve our iso-
lation goals. Most programs already include this sort of structure implicitly: Most
programs already include this structure implicitly: sections of code handling

Table 23.2 Syntax and usage for the keywords used in the Mithril Domain-specific
language.

Syntax Usage Semantics

start start :main Set the start state for the state machine.

exec exec :code Specify that a code unit is only executable.

readwrite readwrite :data Specify the permissions for a data section.

to to :main Specify the state to transition to.

call call ‘do_main’ Specify a method that triggers a state
transition.

tag
tag :data do
section

“.datasec”
end

Tag a section with a keyword. The tag can be
used interchangeably with the section header.

state

state :main do
readwrite :data
to :libc do
call ‘scanf’

end
end

States specify code and data units and the
transitions from those states.
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encryption,networkcommunications,user input, etc. ELFbac supports state labeling
at a number of different granularities, ranging from individual symbols to function
boundaries to entire libraries [13], so states can be as small or as large as required
by the user. The key is to ensure that any code and data that needs to be isolated
is placed inside its own state within the FSM so that ELFbac can protect it from
unauthorized accesses.
Once this policy is defined, the user can use an ELFbac-instrumented compiler

to produce a policy-aware binary. The controls explained in Section 23.3.5 that
ELFbac uses to isolate the requested program pieces are mostly hidden to the user,
until an attempted policy violation causes the program to halt.

23.3.8 ELFbac in Action

We highlight two examples of how ELFbac works to mitigate intent-violating
vulnerabilities:

• The OpenSSH roaming bug is an example of such a mismatch of intent.
A malicious server can trick an SSH client into potentially sharing private keys
and other data. We will demonstrate how ELFbac uses existing memory isola-
tion techniques to enforce the principle of least privilege over separate code
and data.

• Spectre variant 1 exhibits yet another mismatch of intents: The processor
designer’s intent for performance (via speculative execution) unexpectedly con-
flicts with the developer’s intent to preserve secret data. We will also demon-
strate how ELFbac naturally mitigates Spectre variant 1 via policy.

23.3.8.1 SSH Roaming Bug

In 2010, developers working on the OpenSSH client (an open-source program used
to securely connect to other machines using the SSH protocol) added an experi-
mental “roaming” feature to their software, aiming to allow clients to reconnect
to a server in the case of an unexpected network loss [16]. To accomplish this goal,
the OpenSSH client would store any messages that could not be sent to the server
in a buffer, which the server could then request the contents of when the connec-
tion was reestablished. However, there was amajor flaw: The server was not bound
by the buffer’s actual content and could request an arbitrary amount of data from it
upon reconnection even if the client had not filled that space.
In 2016, CVE-2016-0777 described how a malicious SSH server could steal sen-

sitive information from an OpenSSH client using this flaw in the roaming feature
[17]. If the memory allocated for the roaming buffer had previously contained pri-
vate SSH keys or other secrets and had not yet been erased or overwritten by the
client, it could be stolen by the server via a malicious buffer request [16]. While the
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risk of this vulnerability was limited to connections to compromised SSH servers,
its existence demonstrated a clear violation of programmer intent: The feature was
not intended for production release; the developers did not intend to give the
server control over what data could be sent, and the developers certainly did
not intend for sensitive information to be exposed via the roaming buffer.
To mitigate this flaw, we need to isolate the code and data involved in crypto-

graphic operations from that which handles network operations, thus ensuring
that secret keys cannot be leaked via the roaming buffer [16]. Since this is an exist-
ing codebase, we first needed to perform a thorough review to identify the pieces of
the program that are involved in these tasks and thus need to be isolated.
Our resulting FSM consists of three states: A crypto state for tasks involving

private and secret SSH keys, a network state that deals with network communica-
tions, and a default state that encompasses all other operations. (For the sake of
simplicity, we assume that there are no other code/data interactions that pose a
security risk; however, our existing states could be further split into smaller ones
if the need arose.) Each state maintains its own copy of the process address space,
but also has access to a shared address space in case data needs to be passed
between states. Figure 23.5 depicts our full state machine to apply ELFbac to
the OpenSSH Roaming bug.
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Figure 23.5 The finite state machine represented by our OpenSSH ELFbac policy. The
memory allocated for private keys and the roaming buffer will come from different heaps
within different address spaces, keeping the keys from being leaked to a malicious server.
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The key insight here is that each state will maintain a private heap within its
address space, which it uses for allocating memory for its own data items [16]. This
separation of heaps means that even if a private key is not removed from memory
after use, it will never overlap with the program’s roaming buffer because the two
items do not share the same memory space. The server can request as much of the
buffer as they want, but any data used for cryptographic operations remains out of
reach, thus mitigating the roaming bug.

23.3.8.2 Spectre Variant 1

In 2018, researchers revealed twomajor security flaws in the architecture of nearly
every processor chip used in the last couple decades. One of these vulnerabilities
was dubbed Spectre [2]. To achieve greater efficiency, modern processors are
highly parallel in their operation. This parallelism inside instruction execution
is often termed pipelining, and as an optimization technique, it allows the various
execution and memory units of a CPU to operate simultaneously. A challenge for
pipelining is conditional branching within a program. What code and data should
be loaded into the pipeline when a branch is encountered? If the wrong decision is
made, the pipeline must be flushed (or cleared away) so that the correct code can
properly execute. Branch prediction is an additional optimization technique useful
in limiting the amount of pipeline flushes that occur during execution. In essence,
through various heuristics, a processor guesses which direction the conditional
branch will take. Speculative execution is the pipelining and execution of instruc-
tions, after a conditional branch, based on a processor’s guess about how the con-
ditional will evaluate.
Spectre attacks take advantage of this branch prediction and the latent architec-

tural effects of speculative execution. Kocher et al. show that “... speculative exe-
cution implementations violate the security assumptions underpinning numerous
software security mechanisms, including operating system process separation,
containerization, just-in-time (JIT) compilation, and countermeasures to cache
timing and side-channel attacks” [2]. Here we find the violation of intents:

• Processor designers did not intend for there to be any noticeable, latent archi-
tectural effects.

• Operating system developers assumed their understanding of the architectural
pipeline flushing mechanisms.

• Software developers intended for their program’s secrets to be unaffected by spu-
rious conditional branches.

To see this in action, Kocher et al. provide a proof-of-concept in C [2] that
demonstrates an adversarial training of the branch predictor and its subsequent
exploitation to reveal “secret” data that is never actually read during normal pro-
gram operation. A snippet of the lines of interest follows in Listing 23.1.
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The code begins with the creation of several regions of memory, e.g. array1
and array2, including a secret. Additionally, there is a victim_function

with a key conditional branch. To train the branch predictor, the PoC calls this
function with valid values of input parameter x. These values touch areas of mem-
ory in array1 and array2. After training, the victim_function is called
with a malicious x. This malicious x should cause the conditional branch to eval-
uate false. Because of the prior training, the code is executed speculatively, which
loads the page table entry that contains the secret string, thus caching the secret.
After the secret is cached, the branch conditional is evaluated, and the CPU unrolls
the speculatively executed instructions. However, this leaves behind the secret in
the cache. Via some side-channel timing methods, this secret can be extracted.
A key observation is that the secret is never touched during normal execution of

the program. The timewhen it is loaded is essentially by proxy, grouped along with
other data within a page table entry. However, the latent effects of the architecture,
i.e. the caching mechanisms, allow this data to be extracted. We draw the analogy
of breadcrumbs being left behind during program execution.
So,what canELFbacdo tobridge this intentgap?ELFbac’sprimarymeansofpolicy

separation is using page table differentiation. So, naively, the solution to this partic-
ular PoC, from the ELFbac perspective, is to place the secret on a separate page table.

Listing 23.1 Spectre PoC from Kocher et al.

11. /*****************************

12. Victim Code

13. *****************************/

14. uint8_t array1[16] =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

15. uint8_t unused2[64];

16. uint8_t array2[256 * 512];

17.

18. char * secret = “The Magic Words are Squeamish

Ossifrage.”;

19.

20. uint8_t temp = 0; /* Used so compiler won’t optimize

out victim_function() */

21. void victim_function(size_t x) {

22. if (x < array1_size) {

23. temp &= array2[array1[x] * 512];

24. }

25. }
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As seen in Figure 23.6, two states are modeled. The init state represents the
entire program with access to the secret data. Any access to the secret vari-
able requires a state-transition to the init state. Outside of init, the secret is
not accessible. As seen in part (b), only the init_state has readwrite :

secret.
The key insight here is that page-table permissions are respected by the archi-

tecture. When the branch predictor is being trained, the secret variable is never
“gobbled” by the paging mechanisms and thus cached. When the speculative
instructions are pipelined and executed, a page fault is raised when access
to secret is requested in the wrong state. This causes the pipeline to
be stalled, voided, and eventually cleared before the caching mechanisms are
invoked.

23.3.9 Summary

As IoT devices scale into the billions, it is absolutely imperative that they do not fall
victim to intent violations stemming from vulnerabilities such as those described
above. ELFbac is an effective, powerful policy solution that provides a critical layer
of security against attackers looking to subvert designer and developer intent. It
can be applied to both new and existing programs, and, for long-lived IoT devices
where traditional security solutions (such as regular patching) are not feasible,
ELFbac can still help protect against zero-day vulnerabilities and keep them from
being exploited.
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Elf::Policy.inject_symbols (file)
x = Elf::Policy. build do

state ‘init_state’ do
readwrite :default

exec :default
readwrite :secret
to ‘go state’ do

call ‘go’

end

end

end
x.inject(file)

state ‘go_state’ do
readwrite :default
exec : default
exec :go

Start ‘init_state’

end

Figure 23.6 (a) State machine. (b) Mithril policy that mitigates Spectre variant 1.
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23.4 Building a Secure Implementation of AMQP

As an example of using LangSec and ELFbac together for the IoT, we consider
hardening of AMQP protocol implementations.
Demonstrating that an implementation of a network protocol is secure from

crafted-packet vulnerabilities includes ensuring that the parser rejects every mes-
sage that does not conform to the grammar. Another implementation property to
ensure: If a vulnerability that can be exploited exists in the parser, then it is isolated
and placed in a separate memory region, so it does not affect the rest of the mem-
ory. (This example applies LangSec and ELFbac to the parser. Another family of
use cases would apply LangSec to the parser and then apply ELFbac to the main
program to contain damage from any attacks that get through this input validation
component.)
The AdvancedMessage Queuing Protocol (AMQP) is a networking protocol that

clients can use to communicate with each other through the server. AMQP
requires at least one server (also known as a broker), and more than one client.
The server consists of various components: an exchange, a message queue, and
a binding. The exchange receives messages and decides which message queue
must receive the message. Message queues store the messages sent if the messages
haven’t been consumed yet. Bindings specify which received message is put in
which message queue. Traditionally, the clients subscribe to channels on the bro-
ker. Producers publish messages that are received by consumers.
The AMQP protocol is not very suitable for devices with very limited memory

because of the size of the optional fields, but it is very suited for industrial IoT
use cases such as SCADA systems with reliable network connectivity and band-
width. Having an asynchronous queuing system for data means that the data will
always be eventually processed, despite traffic spikes or network connectivity
issues. AMQP supports better security protocols than its predecessor MQTT and
also supports federation of various AMQP servers. Support for such delegation
and a resilient security architecture make AMQP one of the most popular IoT pro-
tocols. A search for the AMQP port 5672 on Shodan shows that there are over
900 000 AMQP brokers operating on the Internet worldwide [18]. More than half
of these AMQP brokers are operating in the United States alone. We also studied
the number of reported vulnerabilities in implementations of the AMQP protocol.
Table 23.3 shows that a significant portion of the number of reported vulnerabil-
ities comprise of parser bugs which could be avoided using LangSec and isolated
with the use of ELFbac.
In this section, we discuss the application of two tools: First, we use the Hammer

parser-construction toolkit to demonstrate its efficacy on the AMQP protocol. Sec-
ond, we implement and inject an ELFbac policy using Mithril.
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23.4.1 A Deeper Understanding of the AMQP Protocol

The various messages spoken by the client and the server in the AMQP protocol
are demonstrated in Figure 23.7. The connection is initiated by the client, whereas
the server is waiting to receive a communication.
The messages received by the broker are: Connection Start, Connection Tune,

Connection Open, Channel Open, Queue Declare, Basic Publish, Basic Get, Chan-
nel Close, and Connection Close. Themessages sent by the broker are: Connection
Start OK, Connection Tune OK, Connection Open OK, Channel Open OK, Queue
Declare OK, Basic Publish OK, Basic Get OK, Channel Close OK, and Connection
Close OK. The receiving parser on the client needs to be able to recognize all the
messages that are sent by the broker, and the parser on the broker needs to be able
to recognize all the messages sent by the client. The state machines of the client
and the servers are shown in Figures 23.8 and 23.9.
As a part of the LangSec approach to implementing parsers we analyze individ-

ual packet formats for the various messages supported by the protocol and extract
the syntactic features used by the protocol. As seen in Figure 23.10, the packet
format uses a length field that must be parsed to correctly parse the rest of the
packet. The length of the rest of the packet must be equal to the length field in
the packet.
The payload of an AMQP packet can be of various types: method frame, content-

header frame, content-body frame, and heartbeat frame. The method frames are
used the most, and the syntax structure of the method frame can be found in
Figure 23.10.
As we mentioned earlier, LangSec argues protocols should be either regular or

deterministic context-free. We consider all the structural requirements for the pay-
load fields of the various packet formats in the AMQP protocol. We do not impose
syntactical restrictions only on the headers but the entire packet as a part of the
LangSec methodology. The AMQP specification includes a generic grammar for
the AMQP packet format. Although the header usually remains similar across

Table 23.3 Number of vulnerabilities reported by the common vulnerabilities and
exposures database maintained by Mitre for the AMQP protocol.

Year Number of input-handling vulnerabilities Total number of vulnerabilities

2015 2 3

2016 2 3

2017 4 5

2018 3 5
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the different packet formats of AMQP, having separate grammars for the various
packet formats would improve readability and make the parsers more fine-
grained.

23.4.2 Hardening AMQP Parsers with Hammer

In the previous section, we detailed the AMQP protocol and its various message
formats. Although the sequence of messages is important for any protocol filter,
the contents of the messages aren’t completely related, i.e. a parser built for the
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Figure 23.9 AMQP Broker State Machine diagram showing the various states and
transitions. The server responds to connection initiation requests from clients.

Type

(a)

(b)

 1 byte 2 bytes

2 bytes 2 bytes Size – 4 bytes

4 bytes Size bytes 1 byte

Channel

Class Method

size Payload End Frame

Arguments

Figure 23.10 (a) Packet format of a generic AMQP packet. The number of bytes in the
payload depends on the “size” bytes. (b) Format of themethod frame used in AMQP payloads.
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Connection Tunemessage format does not rely on fields from its previous message,
which was Connection Start. In case of protocols with reliance on data from pre-
vious message, we advocate performing stateful parsing, after checking for well-
formedness. A well-formedness check would only ensure the structural correctness
of the header, without checking for the equivalence of the reliant fields. This well-
formedness check is followed by stateful parsing, where the fields are validated
with respect to the data previously received.
Once we extract the syntax for the various messages in a particular protocol, we

begin implementing our parsers for the protocol. The AMQP header begins with
the type field, which is 8 bits long. There are a limited number of values that can
comprise of the type message. For example, the field can only comprise of the
values 1 through 4 corresponding to method frames, content header frames, con-
tent body frames, and heartbeats. We witness that the method frames are used
most frequently in our data traces of the AMQP protocol. Apart from examining
the sizes of each of the fields, we are also imposing constraints on the data itself –
ranges of integers, ranges of characters, choices of strings, etc.
The syntaxes for each of themessage formats are converted to specific parsers for

each of the states in the state machine. We use scapy to extract the application
layer of the packets and pass it on to the AMQP parser. The AMQP parser is imple-
mented as a Docker container that receives raw messages and validates the syntax
of the messages. The design of our parser implementation is in Figures 23.11
and 23.12.

23.4.3 Implementing a Policy for AQMP in Mithril

We implement a policy for the AMQP parser in the Mithril domain-specific lan-
guage, already described in Table 23.2. First, the state machine is extracted for an
implementation of the AMQP protocol. The states for the program as a whole are:
start, parser, and libc. The globals are initialized in the start state, the message is
received in the buffer. The buffer is then passed on to the parser. The parser

AMQP message
receiver

AMQP parser
container

TCP server

Parser

container

Figure 23.11 Design of our AMQP
parser implementation.
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performs the parsing operation and hence has to have access to the necessary
globals. In the libc state, the program performs operations such as scanf and
printf.
Second, this state machine is then converted into a Mithril policy. Each state is

specified with a fine-grained policy specifying all the global variables that need to
be accessible and the transitions that would lead to that state. Our policy for AMQP
starts with the start state and then transitions to the parser when the do_parse
method is called. All globals need to be given readwrite access to the start

state since the globals need to be initialized. Since Mithril makes use of dynamic
loading, we transition to libc whenever _dl_runtime_resolve is called.
Since in our implementation we do not make use of any other libraries, this
method would only be executed when functions from libc are called.
The state machine and the corresponding Mithril policy code can be found in

Figure 23.4.

23.5 Evaluation Techniques

Thus far in this chapter, we have studied existing research to enforce the program-
mer’s intent with techniques such as LangSec and ELFbac. In this section, we will
survey some of the techniques widely used to test software built on the principles
of LangSec and ELFbac.
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Figure 23.12 Conversion of a syntax structure for a packet format into Hammer parser-
combinator code.
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23.5.1 Coverage-Guided Fuzzing with AFL

American Fuzzy Lop (AFL) is a state-of-the-art coverage-guided fuzzer that is pro-
tocol agnostic. It takes a set of samples and runs genetic algorithms on it to gen-
erate more samples to run through a program [19]. Fuzzers run over their target
many times with different inputs. AFL does not require that we extract the specific
target methods into separate files and then compile those files as fuzz targets.
Other techniques, such as control-flow analysis and data-flow analysis, demon-

strate interesting ways to understand how a binary operates and what operations
the binary performs. However, they do not scale well for large applications. AFL
can be given a single binary, and it can perform brute-force fuzzing that covers all
edges of a program’s control flow.

afl-fuzz -i testcase.dir -o findings.dir /path/to/program @@

Binaries are fuzzed with the script above. AFL provides a text-based GUI to dis-
play the progress, number of paths discovered, number of crashes and hangs, and
the run time. The inputs that lead to crashes and hangs are all logged in separate
folders.

23.5.2 Static Analysis Using Infer

Infer is a static-analysis tool that can be run on C code to detect certain categories of
errors commonly found. Namely, Infer can catch null de-references,memory leaks,
premature nil termination arguments, and resource leaks [20]. Static analysis pro-
vides another layer of assurance that the program doesn’t have any vulnerabilities.
Static analysis requires access to the source code. These tools analyze all code

paths of a program and check for paths that lead to crashes, memory violations,
memory corruption, memory leaks, etc. They can also be programmed to detect
style violations. In our implementations, we use [20] and make sure there are
no memory violations.
Memory violations usually indicate poor handling of input, which could lead to

vulnerabilities. Capturing programmer’s intent with LangSec and ELFbac can
alleviate these memory violations and isolate them.

23.6 Conclusions

In this chapter, we introduced the notion of intent as a secure design primitive and
we discussed the importance of preserving designer and developer intent for system
security.Wepresented two security paradigms to safeguardagainst adversarieswho
wish to subvert system security by violating designer anddeveloper intent:LangSec,
which constrains program inputs to safe options as defined by the protocol specifi-
cation and the Chomsky hierarchy, and ELFbac, which isolates unrelated code and
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data andenforces boundariesbetweenprogrampieces asdefinedbydesigner/devel-
oper policies. Finally, we showed how a simple program such as an AMQP parser
could be hardened using tools delivered by these paradigms, and we introduced
various ways to test and validate such hardened programs.
While LangSec and ELFbac provide some mechanisms to preserve designer and

developer intent, work remains. For instance, we aim to extend LangSec’s func-
tionality beyond just validating packets against a protocol specification; we intend
to start examining the data within the packet to ensure that it makes sense within
the program’s context. For example, can we examine the metadata around a piece
of data (where it came from, what values we have seen in the past, etc.) to make a
decision about how trustworthy it is? With ELFbac, we are looking for ways to for-
mally prove specific security properties of ELFbac-enhanced programs, similar to
projects such as Low∗ [21].
We also intend for our tools to extend beyondmerely enforcing intent.We aim to

help the designer and the developer think critically about their intentions and
what they should or should not do to maintain system safety. Currently, LangSec
and ELFbac blindly follow the instructions of the designer and developer and
blindly ensure that whatever intent they express is not violated. However, if the
original intent of the system is misguided (for example, if the desired protocol
is too powerful to be verified as safe), our tools should alert the designer/developer
to this issue and help them produce a better alternative that balances safety with
functionality. At the very least, we want LangSec and ELFbac to make designers
and developers explicitly consider their intent and ask themselves if they are ask-
ing too much of their system.
Finally, wemust also consider preservation and refinement of user intent, which

neither LangSec nor ELFbac currently address. As we noted before, users are ulti-
mately the ones who determine how a system operates, and thus their actions can
supersede the intent of the designer and developer. As a community, we must pay
special attention to the usability of systems to ensure that the user uses the system
the way the designer and developer intended, instead of violating designer and
developer intent to achieve their primary task.
In sum, securing the IoT requires realizing the intent of each stakeholder. Lang-

Sec and ELFbac make great strides toward addressing this grand challenge, but
more work must be done.

23.7 Further Reading

For an in-depth discussion of the theoretical aspects of LangSec, we recommend
the reader consult Sassaman et al. [22]. For Linux kernel implementation details of
ELFbac, we recommend consulting Bangert et al. [13].
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The yearly LangSec Workshop at the IEEE Symposium on Security and Privacy
provides a venue to discuss LangSec research ideas. For case studies of LangSec
and ELFbac, the reader may consult Anantharaman et al. [23], Bratus et al.
[24], and Jenkins et al. [16].
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