
Vox Clamantis in Deserto

Parsing Real-World Data Formats

Prashant Anantharaman, PhD Student
Department of Computer Science

Dartmouth College
https://prashant.at

pa@cs.dartmouth.edu

Boston Computing Club: 29th November 2020

https://prashant.at
mailto:pa@cs.dartmouth.edu

Vox Clamantis in Deserto

About me

● Master’s at Dartmouth in 2017. Ugrad: College of Engineering Guindy in 2015
in Computer Science and Engineering.

● Originally focussed on building parsers for IoT and SCADA protocols.

● Recently shifted to building a Data Description Language for File Formats and
Network Protocols.

Vox Clamantis in Deserto

Problem: Zero-Days via Crafted Input

Vox Clamantis in Deserto

Problem: Zero-Days via Crafted Input

Vox Clamantis in Deserto

Endemic Everywhere

Vox Clamantis in Deserto

Endemic Everywhere

Vox Clamantis in Deserto

Endemic Everywhere

Vox Clamantis in Deserto

The LangSec Approach to the Problem

Vox Clamantis in Deserto

The LangSec Approach to the Problem

Vox Clamantis in Deserto

The LangSec Approach to the Problem

Vox Clamantis in Deserto

The LangSec Approach to Solving It

Vox Clamantis in Deserto

Preventing Zero-days via Crafted Input
● Solution: LangSec Parsers

1. Define a grammar that represents a
"secure subset" of the protocol.
○ No more than context-free!
○ ...or maybe PEG

Vox Clamantis in Deserto

Preventing Zero-days via Crafted Input
● Solution: LangSec Parsers

1. Define a grammar that represents a
"secure subset" of the protocol.
○ No more than context-free!
○ ...or maybe PEG

2. Build a parser that accepts only this
grammar.
○ Invocations match the grammar!

Vox Clamantis in Deserto

Preventing Zero-days via Crafted Input
● Solution: LangSec Parsers

1. Define a grammar that represents a
"secure subset" of the protocol.
○ No more than context-free!
○ ...or maybe PEG

2. Build a parser that accepts only this
grammar.
○ Invocations match the grammar!

3. Use this parser everywhere this
protocol is parsed.

Vox Clamantis in Deserto

Context-Free Grammars

Defined as a 4-tuple: G = (V, Σ, R, S)

● V: Finite set of non-terminals
● Σ: Finite set of terminals (disjoint

from V)
● R: Set of productions defined by

V x (V ⋃ Σ)*
* is the kleene-star here.

Vox Clamantis in Deserto

An introduction to PEGs

● No ordered choices like CFGs.
● & and ! are additional operations

allowed on PEGs. These
operations do not consume input.

● PEGs are not ambiguous like
CFGs.

● You can express languages such
as anbncn using PEGs. How?

○ Hint: use the &

Vox Clamantis in Deserto

None of the traditional formal-language semantics
are enough for real world formats

Bluetooth

Vox Clamantis in Deserto

Supporting Real-World Formats

● Predicates

● Length Fields

● Repeat Fields

● Jump

Approaches:

● Symbolic Register Automata
● Data Dependent Grammars

Vox Clamantis in Deserto

Finite-cost Symbolic Register Automata

● DFA + finite registers + transitions
on predicates instead of symbols.

● Counters can be incremented only
once.

○ Decremented afterwards.
○ Test for counter == 0

● Unidirectional head movement.
● Allows us to prove equivalence!
● Have not been used for parsing

before.

Vox Clamantis in Deserto

Finite-cost Symbolic
Register Automata

● Uses Frama-C to implement
invariants, preconditions and
postconditions.

● Suited for streaming protocols as
well, we only do O(1) work when
every byte is received.

● Runs in O(n) time

Vox Clamantis in Deserto

Do we need a new Data Description Language?

● Kaitai (kaitai.io) does implement
most of these constructs, but:

○ It does not implement any particular
parsing algorithm.

○ Uses a non-traditional way of specifying
choices

○ Does not use any module system

Vox Clamantis in Deserto

Parsley Language

● We build on Attribute Grammars
and Data-Dependent Grammars

● If we wanted to accept anbncn

S -> APlus BPlus CPlus

APlus -> a APlus / ε

BPlus -> b BPlus / ε

CPlus -> b CPlus / ε

Vox Clamantis in Deserto

Parsley Language

● Adding attributes:

○ These names cannot overlap due to the
way our type system is setup.

○ We support int, string, byte strings,
floats.

S -> APlus BPlus CPlus

APlus ap {size_a: int} -> a APlus / ε

BPlus bp {size_b: int} -> b BPlus / ε

CPlus cp {size_c: int} -> b CPlus / ε

Vox Clamantis in Deserto

Parsley Language

● Dependent variables
○ A variable is created with scope only

within this production. The variable
takes the type of the nonterminal.

○ Syntax useful in cases such as S -> AA

● Assigning Attributes
○ We need to assign all the attributes

initialized.

○ In case of ε,we assign size to be 0. In
all other cases we add the previous size.

S -> APlus BPlus CPlus
APlus ap {size_a: int} -> a ap1=APlus

{ap.size_a := ap1.size_a + 1}
/ ε {ap.size_a := 0}

BPlus bp {size_b: int} -> b bp1=BPlus
{bp.size_b := bp1.size_b + 1}
/ ε {bp.size_b := 0}

CPlus cp {size_c: int} -> b cp1=CPlus
{cp.size_c := cp1.size_c + 1}
/ ε {cp.size_c := 0}

Vox Clamantis in Deserto

Parsley Language

● Adding constraints
○ These are boolean functions.

○ We can move them to a user-defined
function.

○ S does not need any assignments here.

S -> a=APlus b=BPlus c=CPlus
[a.size_a = b.size_b &&

a.size_a = c.size_c] ;;
APlus ap {size_a: int} -> a ap1=APlus

{ap.size_a := ap1.size_a + 1}
/ ε {ap.size_a := 0} ;;

BPlus bp {size_b: int} -> b bp1=BPlus
{bp.size_b := bp1.size_b + 1}
/ ε {bp.size_b := 0} ;;

CPlus cp {size_c: int} -> b cp1=CPlus
{cp.size_c := cp1.size_c + 1}
/ ε {cp.size_c := 0}

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

APlus -> A APlus / ε

BPlus ->B BPlus / ε

CPlus ->C CPlus / ε

A -> a f

B -> b f

C -> c f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

APlus -> A APlus / ε 0

BPlus ->B BPlus / ε 0

CPlus ->C CPlus / ε 0

A -> a f

B -> b f

C -> c f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

0

APlus -> A APlus / ε 0

BPlus ->B BPlus / ε 0

CPlus ->C CPlus / ε 0

A -> a f

B -> b f

C -> c f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

0

APlus -> A APlus / ε 0

BPlus ->B BPlus / ε 0

CPlus ->C CPlus / ε 1 0

A -> a f f

B -> b f f

C -> c 1 f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

f 0

APlus -> A APlus / ε 0 0

BPlus ->B BPlus / ε 0 0

CPlus ->C CPlus / ε 1 0

A -> a f f

B -> b f f

C -> c 1 f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

f f 0

APlus -> A APlus / ε 0 0 0

BPlus ->B BPlus / ε 0 0 0

CPlus ->C CPlus / ε 2 1 0

A -> a f f f

B -> b f f f

C -> c 1 1 f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

f f f f 0

APlus -> A APlus / ε 0 0 0 0 0

BPlus ->B BPlus / ε 2 1 0 0 0

CPlus ->C CPlus / ε 0 0 2 1 0

A -> a f f f f f

B -> b 1 1 f f f

C -> c f f 1 1 f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

f f f f 0

APlus -> A APlus / ε 0 0 0 0 0

BPlus ->B BPlus / ε 2 1 0 0 0

CPlus ->C CPlus / ε 0 0 2 1 0

A -> a f f f f f

B -> b 1 1 f f f

C -> c f f 1 1 f

Let us try to parse “aabbcc” using our algorithm

a a b b c c ε

S -> APlus BPlus
CPlus

6 f f f f f 0

APlus -> A APlus / ε 2 1 0 0 0 0 0

BPlus ->B BPlus / ε 0 0 2 1 0 0 0

CPlus ->C CPlus / ε 0 0 0 0 2 1 0

A -> a 1 1 f f f f f

B -> b f f 1 1 f f f

C -> c f f f f 1 1 f

Vox Clamantis in Deserto

Parsley on MavLink
fun convert(b : [byte]) -> int = {
 (case Int.of_bytes(b) of
 | option::Some(i) -> i
 | option::None() -> 0)
}

type headertype = {magic: int,
payload_length:int,

 incompatibility_flag: int,
compatibility_flag: int,
packet_sequence: int,
system_id: int,
component_id: int,
message_id: int}

MavlinkHeader header {headertype} :=
magic=Byte
payloadlength=Byte
incompatibility=Byte
compatibility=Byte
packet_sequence=Byte
system_id=Byte
component_id=Byte
message_id=(Byte ^ 3)
[Int.of_byte(magic) = 253 ||

Int.of_byte(magic) = 254]
{

 header.payload_length :=
Int.of_byte(payloadlength);

 …
Header.message_id := convert(message_id)
}

}

Vox Clamantis in Deserto

Complexity Analysis

● If number of productions is k and the input size is n, our Parsley parser runs in
O(n.k) time.

● Jump instruction is still a work in progress. We need to create another chart at
the location where we need to start parsing.

S -> Jump(offset, size, Production)

● There seem to be situations (like in the PDF format) where you do not know
the size. How would we deal with such a construct?

Vox Clamantis in Deserto

Further Reading

● Information about LangSec: http://langsec.org/

● Research Report: The Parsley Data Format Definition Language
https://www.cs.dartmouth.edu/~sws/pubs/parsley-langsec2020.pdf

● Papers on SRAs and the Parsley Parser are work-in-progress.

http://langsec.org/
https://www.cs.dartmouth.edu/~sws/pubs/parsley-langsec2020.pdf

Vox Clamantis in Deserto

Thank you!

Questions?

https://prashant.at

pa@cs.dartmouth.edu

https://prashant.at
mailto:pa@cs.dartmouth.edu

