
A Format-Aware Reducer for Scriptable Rewriting of PDF Files

Prashant Anantharaman
Dartmouth College

Hanover, NH

Steven Cheung
SRI International

CA, USA

Nicholas Boorman
SRI International

CA, USA

Michael E. Locasto
Narf Industries

NJ, USA

Abstract—Sanitizing untrusted input is a significant unsolved
problem in defensive cybersecurity and input handling. Even
if we assume that a safe, provably correct parser exists to
validate the input syntax, processing logic may still require
the application of certain transformations of the parser output.
For example, parsers traditionally store the parsed objects in
a generic tree structure; hence the processing logic needed to
modify this structure can be significant. Also, popular parsing
tools do not include the functionality to serialize (or unparse)
the internal structure back to bytes.

This paper argues for the need for a format-aware tool
to modify structured files. In particular, we propose adding a
reducer to the Parsley PDF checker. The Parsley Reducer—
a tool to apply transformations on input dynamically—would
allow developers to design and implement rules to transform
PDF files. Next, we describe a set of Parsley normalization
tools to be used with the Reducer API and showcase their
capabilities using several case studies. Finally, we evaluate our
normalization approach to demonstrate that (1) the developer
effort to design our reducer rules is minimal, (2) tools extract
more text from transformed files than the original files, and
(3) other popular PDF transformation tools do not apply the
corrections we demonstrate.

Index Terms—LangSec; Reducer; PDF; Parsley; Serializer;
Safe PDF rewriting;

1. Introduction

There is a need to have an organized way of applying
fine-grained rewriting rules to parsed input, particularly for
data formats. For example, software engineers that deal
with a complex file format like PDF need a toolchain to
enable them to rewrite an arbitrary, complex PDF file to a
notional “PDF/Safe” dialect by removing or rewriting slight
malformations or by substituting risky instances of partic-
ular format features with an equivalent representation that
carries less risk. Engineers who deal in data languages often
lack a principled framework for applying transformations to
instances of that data in a safe and systematic way [10],
[18].

Current data rewriting systems in file and network se-
curity are usually based on regular expression search-and-
replace, such as URL rewriting schemes when they occur in

email. This technique “works” because typical URLs do not
have deep, nested structure.1 This grep-like approach will
not work for complex structured input. Moreover, the post-
parsed input is likely contained in a tree-like or similar data
structure, thereby losing the ease of applying file and line-
oriented Unix-style string search-and-replace tools. Such
tools and tracers lack format awareness: they do not “see”
the meta-language structure on top of the symbols built to
scan.

One way of visualizing this problem is to apply a reg-
ular expression-aware trigger-action programming pattern.
Xpath [12], M4 [22], and Gremlin [33] are standard tools
used to achieve this task. However, we would need to build
tools to operate on complex graph or tree structures instead
of text or XML data in the more generic case.

This paper argues for the need for format-aware tools
to transform, sanitize, and serialize data. There are several
reasons to design such tools. First, not all data formats are
similar. For example, the transformations we must apply
to a PDF file differ significantly from DNS network pro-
tocol message transformations. File formats often contain
offsets—data spread throughout the file, and the locations
and size of this data are maintained in a table. Designing
an intermediate representation common across various data
formats is also challenging.

Second, we need tools that can generate files from an in-
termediate representation. This operation is called unparsing
or serializing [19]. However, with the complex structures in
data formats, programmers need to design their serialization
tools for a particular format to convert the internal represen-
tation to bytes.

Finally, the PDF specification has evolved a lot over the
last three decades, resulting in several ad hoc implemen-
tations that create PDF files that violate the specifications
in subtle ways. We investigated commonly occurring errors
in PDF files and found that a substantial number of errors
require sophisticated methods to fix these errors. For exam-
ple, in a dataset of 1 million PDF files, we found that over
3000 of them contained page tree node malformations of
some sort—meaning keys mandatory in the page tree nodes

1. Although they can be surprisingly complex, as evidenced in M. Zawel-
ski’s Browser Security Handbook, due to the various legal representations
of IPv4 and IPv6 addresses along with the permitted encoding schemes for
GET and POST parameters.

were missing. As a result, these otherwise benign files do
not open on several PDF readers.

Additionally, Muller et al. [26] demonstrated that PDF
files contain metadata, personally identifiable information,
and redacted data. For example, they found that over 58%
of PDF files in their sample included author information.
Furthermore, PDF tools also include the creation time and
the name and version of the tool used to create the file. An
adversary can use this information about the victim’s PDF
tools to craft exploits.

Although the most common application for data trans-
formation tools is fixing minor malformations in data, there
could be other use cases. For example, we can transform
valid files to violate format specifications. We can then use
these files to test parsers for these formats. We can also
use a parser and serializer to redact data transiting network
filters. We can achieve this by applying transformations to
the parsed data structures and then serializing the parsed
structure back to a network packet.

To this end, we present the Parsley normalization tools
that address the above challenges using several approaches.
First, we introduce the Parsley Intermediate Representation
(Parsley IR), a representation to capture the syntax of PDF
objects in use. Developers can use this IR to debug PDF
files or use it with other normalization tools that are a part
of the Parsley toolchain.

Second, we develop the Parsley Reducer API to al-
low developers to specify various transforms on the PDF
structure. A reducer is a tool that can dynamically execute
transformation functions over data. These transformation
functions are defined as a set of reducer rules. Then, a
reducer applies these rules to transform data. This paper
proposes a reducer API targeted at the PDF format. The
API allows a developer to specify selection, filtering, and
replacement rules.

Our Reducer API provides a customizable, scriptable
rewriting system for the PDF format. This design pattern
is similar to the pattern used by Pin [24] and Valgrind [27]
and dyninst and DynamoRio [9] for x86 code. These tools
use this pattern for other purposes, such as performance
profiling, static and dynamic memory and cache analysis,
and bug finding. They dynamically inject x86 code to mon-
itor the program’s performance. In contrast, we invoke our
Reducer API to apply transformations to the PDF structure.

Third, we build a serializer to convert Parsley IR to a
transformed PDF file. Serialization is the process where an
internal representation of data is converted to a set of bytes
that can be stored on disk or sent over the network [32],
[40]. In the case of a file format, it converts an internal
representation to a file format. For example, we can convert
a JSON representation of a PDF file to a PDF file. Similarly,
in the case of network protocols, a machine beginning to
transmit a message will create a structure with all the fields
locally. Subsequently, these fields are converted to bytes in a
sequence predefined by the serializer. Our serializer for the
PDF format does not preserve the object order but retains
all the in-use objects while computing the correct offsets

and generating syntactically valid PDFs. We automatically
remove objects not used.

Our paper makes the following contributions:

• We created a radically new capability we call the
Parsley Reducer API, a novel tool to allow develop-
ers to programmatically redact or modify portions
of PDF files. This concept uses a design pattern
similar to Pin and DynamoRio, allowing scriptable
dynamic data operations on PDF files. For exam-
ple, this new capability provides something akin to
a graceful dynamic exception handling mechanism
that is external to the codebase it is protecting, sim-
ilar to seminal work in matching exploit signatures
in network stacks [38].

• Our research over a large corpus (1 million files)
of real-world documents, led to the discovery and
characterization of a number of malforms present in
PDF files that are amenable to safe rewriting. We
use these files to create a set of case studies that
successfully demonstrates that this tooling repairs
malforms and other conditions of concern in real
PDF documents.

• We conducted experiments that explore several di-
mensions of comparison between existing PDF
transformation tools and our Reducer. We discover
that these existing PDF (normalization) transforma-
tion tools lack any ability to dynamically script
or react to malforms present in their input and
are unsound (i.e., they introduce errors during their
rewriting).

• We provide conceptual contribution: there are many
divergent unlabeled dialects of PDF. Our work shows
and provides tooling so that one can begin to merge
unlabeled dialects into labeled, normalized represen-
tations, where the overall organization is provided
by the set of transformations defined and executed
by the Reducer. In other words, we can begin to
formulate dialects that are labeled by the set of
transformations applied and/or malforms rectified.
The benefit of this is to reduce poor outcomes like
parser differentials and other format confusion.

1.1. Definitions

The Parsley normalization tools are a part of the larger
Parsley system. The Parsley system first validates PDF files
to ensure they are syntactically valid. As a result, we can
successfully serialize well-formed files or those that we can
transform into well-formed files using our reducer.

Definition 1.1 (Well-formed PDF file). A PDF file is well-
formed if the Parsley syntax checker decides that the overall
syntax of the file is valid as per the PDF 2.0 specification.

Since we transform a PDF file, we want to ensure that
the text in the original PDF is fully preserved. In addition,
since we have fixed particular objects by applying transfor-
mations, pages the text extraction tools could not previously

access will now be accessible. Hence, we hypothesize that
a safe normalization tool must produce the same amount
of text or more text than the original file. Additionally, the
transformed file must also be syntactically valid.

Definition 1.2 (Safe Normalization). The original PDF file
P1 is transformed to produce a new PDF file P2. This
transformation is safe if:

• P1 and P2 are well-formed PDF files, and
• The text extraction output of P2 is identical or a

superset of the text extraction output of P1 across
multiple tools.

This paper describes six case studies we constructed to
demonstrate the utility of a format-aware normalization tool
for the PDF format. The normalization tool uses a reducer
and serializer in conjunction to produce transformed PDF
files.

Claim 1. The Parsley reducer and serializer produce safe
normalizations.

We back this claim up by evaluating our normalization
approach against two datasets, each over 6000 PDF files.
Furthermore, the reducer rules we evaluated were designed
to fix specific malformations commonly seen in PDF files
but not commonly fixed by PDF rewriting tools.

Organization. The rest of this paper is organized as
follows. Section 2 provides a primer on the PDF format and
discusses a Recognizer we use to evaluate our normalization
tool. Next, Section 3 discusses the design of the Parsley
Normalization tool—detailing the implementation of the Re-
ducer API and Serializer. Section 4 describes various errors
and useful transformations we identified in prior work using
the Parsley PDF checker and the Recognizer. We evaluate
the Parsley normalization tools in Section 5. Furthermore,
we discuss other conceptual contributions in Section 6, and
other closely related work in Section 7. Finally, Section 8
concludes the paper.

2. Background

2.1. PDF Primer

PDF files, in their simplified form, comprise five basic
structures [31].

• Header: this specifies the PDF version this file
follows.

• Objects: a list of objects each conforming to a
predefined PDF type.

• Cross-reference table: also known as xref table,
this table contains a list of absolute locations of the
objects in the PDF file.

• Trailer: this dictionary stores references to the Root
object and info dictionary. The trailer also contains
other metadata fields such as the size of the xref
table.

• End of file marker: this marker shows where the
xref table is stored.

Each object in a PDF file are identified by an object
number and a generation number. For example, let us con-
sider the following object.

13 0 obj
Object contents
..
endobj

In the above example, the object takes the object number
13 and generation number 0. This object can be referenced
from other objects or the trailer via the reference 13 0 R.

Dictionaries. PDF dictionaries are surrounded by
<< and >> characters. The keys in these dictionaries must
be of the name type, whereas the value portion can hold
any predefined PDF type. For example, <</Foo1 (bar)
/Foo2 13 0 R>> is a dictionary with two keys, Foo1
and Foo2, where the corresponding values are of types
string and reference respectively. The ISO 32000-2:2020
PDF specification specifies several rules on various dictio-
naries.

Arrays. These are predefined objects that are sur-
rounded by brackets ([and]) and contain multiple elements
separated by spaces. Arrays can be homogeneous or hetero-
geneous and can be fixed or variable length. For example,
[(foo) /bar 13 0 R] is a heterogeneous array of size
three where the first object is a string, the second object is
a name object, and the third object is a reference.

Streams. These predefined objects contain a dic-
tionary and a compressed stream. The adjoined dictionary
holds keys that specify the compression algorithm used and
the length of the stream. In most cases, stream objects
are indirectly referenced, i.e., they are entirely stored in a
different object and not embedded in another object. The
code snippet below shows an example of a stream object.

13 0 obj
<<
stream dictionary objects
>>
stream

endstream
endobbj

2.2. Running Example

In the rest of the paper, especially Section 4, we will use
the following running example to discuss transformations to
PDF files. This example includes two PDF objects that are
surrounded by the obj and endobj tags. The first object
in the snippet takes ID 1, whereas the second one takes ID
0. Both the objects have the generation number 0.

Catalog. In the above example, object 1 is a Catalog
dictionary. Dictionaries, in PDFs, are surrounded by << and
>> symbols. They hold key-value pairs that are separated
by whitespaces. In this example, the keys are Names, Out-
lines, Lang, Type, PageLayout, and PageMode. There are

1 0 obj
<</Names <</Dests 4 0 R>>
/Outlines 5 0 R /Pages 2 0 R
/Lang (en-US)
/Type /Catalog
/PageLayout /OneColumn
/PageMode /UseOutlines>>
endobj

2 0 obj
<</Count 13
/Kids [6 0 R 25 0 R 33 0 R
35 0 R 38 0 R 45 0 R 49 0 R
57 0 R 60 0 R 63 0 R 66 0 R
68 0 R 70 0 R]
/Type /Pages>>
endobj

several constraints on a Catalog dictionary to ensure cross-
compatibility: a file rendered on various PDF readers or text
extraction tools must produce nearly identical results.

The Type and Pages keys are the only mandatory keys in
a Catalog. Additionally, each key has a type associated with
it. For example, the Lang key must have a corresponding
string, and the PageLayout and PageMode keys must have
a corresponding Name object chosen from a list of options.
The Names key has a corresponding dictionary object in this
example. Whereas the Outlines and Pages keys must always
include indirect references to a dictionary that is stored in
another object. The Outlines key refers to object number 5,
while the Pages key refers to object number 2.

Page Tree Node. Similarly, Page Tree Nodes also
include required and optional keys. The tree’s root node
must not include a Parent key but include Kids, Type, and
Count keys. If any of these keys are absent, the Page Tree
Node is invalid, and it can get challenging to traverse the
tree. Other non-root nodes in the tree must include a Parent
key.

Like in the case of the Catalog dictionary, the specifi-
cation assigns types for these keys. For example, the Count
key must have an associated positive integer, and the Kids
key has an array of references to other Page Tree nodes or
pages.

2.3. Meriadoc Recognizer

This paper relies on the Meriadoc Recognizer to test
a PDF file against a set of PDF parsers [36]. The recog-
nizer instruments PDF parsers such as Mupdf, Mutool [5],
Qpdf [8], PDFMiner [34], and Poppler [29], to generate
meaningful errors that help debug malformations.

It applies techniques such as parser watchpoints—
monitoring parsers in runtime to find out which piece of
code leads to errors. These parser watchpoints are format-
aware tracers—explicitly designed to handle PDF files.
These format-aware tools use a higher-level representation

of the parsing events. With this representation, we can
provide meaningful, explainable errors as output.

There is a strong coupling between the Meriadoc Recog-
nizer and the Parsley Reducer, as we discuss in Section 3.4.
The Recognizer provides feedback to pinpoint where other
PDF parsers reject a file Parsley generates. With this insight
on the error types, we revise future versions of our serializer
to avoid buggy files. We also used this Recognizer to com-
pare a file transformed by other PDF repairing or cleaning
tools (such as Caradoc and Mutool clean) in Section 5.4.

3. Parsley Normalization Tools

There are two possible architectures we envision for
the normalization tool. First, we can use the reducer as an
additional pass to the PDF checker. This way, before files are
type-checked, we fix the objects based on the set of reducer
rules. Second, the reducer can be used in conjunction with
the serializer. In this approach, we focus on making fixes in
the intermediate representation and provide a transformed
file.

3.1. Background

Type check

PDF
File

Extracted text or errors

Syntax Check,

extract structures

Content stream

check; text extraction

Syntax errors

Type errors

Content stream
errors

Figure 1. We show the steps followed by the Parsley PDF parser to validate
PDF files.

The Parsley PDF parser applies several checks to ensure
that a PDF file is well-formed. We built the individual com-
ponents of the parser to follow the PDF 2.0 specification.
Figure 1 shows the steps followed by our PDF parser.

First, we syntactically validate all objects in a PDF file
by following the objects from the xref table. This step
ensures that the dictionaries, streams, arrays, and other
predefined-typed objects are well-formed. Next, the syntax
checker extracts an intermediate representation that provides
the following structures.

• The object numbers and the corresponding objects
in use

• The root (Catalog) and info dictionaries

• PDF file version (extracted from the PDF header and
the Catalog dictionary)

In the second step, we type-check the various objects
starting with the Catalog dictionary and Info dictionary. We
define specifications for each dictionary, array, and stream
object to apply the correct types. For example, in arrays, we
define the array size and the object type at each location in
the array. Similarly, for dictionaries and stream objects, we
define the keys that must be present and their corresponding
types. Then, iteratively, we type-check all the objects ref-
erenced in these dictionaries based on type specifications.
Finally, we discuss several reducer rules in the case study
based on the errors we identified using our type checker.

In the third step in the Parsley PDF checker, explore
content streams—descriptions of the page’s contents. These
content streams include text, shapes and drawings, and
images. We validate content streams to ensure that the text
and the metadata are well-formed. We also provide the
functionality to extract this text.

In summary, the Parsley PDF checker performs three
levels of validation to ensure that files are well-formed. Our
second and third passes generate a binary output by check-
ing the internal representation. Therefore, our normalization
tools operate on the internal representation generated after
the first pass. In definition 1.1, we consider a file well-
formed if it passes the first step of validation in Figure 1.

This paper focuses primarily on the Parsley normal-
ization tools that we use in conjunction with the rest of
the Parsley PDF checker. Figure 2 demonstrates the overall
architecture of the Parsley normalization tools. We designed
the Parsley normalization tools (the reducer and serializer
used in conjunction) with several goals in mind:

• Usability: Provide an API to support scriptable
editing
There are several reasons to edit PDF files. We want
to design an API that provides flexibility to identify
objects of interest and edit them.

• Composable Design: No shotgun serializers
We must not place the burden of serializing the
internal representation on the developer. We envision
developers would use our serializer as a black box.
Additionally, we also want to avoid the anti-pattern
of a shotgun serializer—when a code performs vali-
dation or transformations while also serializing por-
tions of the internal representation.

• Soundness: Produce syntactically valid PDF files
Our serializer must produce syntactically valid PDFs
that pass the first syntax check the Parsley system
makes. However, these files may not pass the other
two validation checks we place since PDF files
may already contain type or content stream malfor-
mations in them. Additionally, developers can also
introduce malformations using the reducer API—
such as removing mandatory keys from dictionaries
or deleting objects.

3.2. Parsley Reducer

The Parsley PDF parser and our normalization tools are
implemented in Rust and require the compiler version 1.55.0
or higher.

We require that the developer specify a selector hash
map, use one of the filtering functions we have built-in as a
part of the reducer API, and then describe the type we must
replace the filtered keys with.

3.2.1. Parsley IR. The Parsley Intermediate Representation
(IR) is made available as an output of the Parsley syntax
checker. This IR comprises of four items: (1) a hash map
containing a mapping of PDF object IDs and their corre-
sponding type-annotated objects, (2) object ID of the root
object, (3) object ID of the Info dictionary, and (4) version
number of the PDF file extracted from the header and the
version string in the Catalog dictionary.

This IR does not store information about the exact
locations of the various objects in the original file. Since
PDF objects can be updated, traditionally these older, unused
objects are still stored in a PDF file. However, our IR does
not represent these unused objects—only storing the used
objects.

(1,0): {
Names: PDFType:Dict(map: {

Dests: PDFType:Ref((4,0))
}),

Outlines: PDFType:Ref((5,0)),
Pages: PDFType:Ref((2,0)),
Lang: PDFType:String(val: "en-US"),
Type: PDFType:Name(Catalog),
PageLayout: PDFType:Name(OneColumn),
PageMode: PDFType:Name(UseOutlines),
}

(2,0): {
Count: PDFType:Integer(13),
Kids: [PDFType:Ref((6,0)),

PDFType:Ref((25,0)),...],
Type: PDFType:Name(Pages)
}

Code Snippet 1. Parsley IR example of our running example

Code snippet 1 demonstrates the Parsley IR syntax for
our running example. Essentially, it is a hash map of PDF
object IDs and generation numbers and the object contents.

3.2.2. Selector. The selectors we use as input to the reducer
take in a hash map with the list of keys and the correspond-
ing values for selecting an object. For example, if we need to
apply transformations to the Page Tree Node objects where
the objects have the type key “Pages,” we create a hash map
with the key “Type” and value “Pages.”

The Selector traverses the Parsley IR hash map to find
the appropriate objects. Occasionally, this could also result

Parsley Syntax
Analyzer

Parsley Reducer Parsley Serializer

Reducer
Rules

Original PDF
File

Transformed
PDF File

IR: List of
objects and

corresponding
types

Modified IR

Figure 2. Changing the architecture of Parsley to support PDF rule-based transformations.

in traversing the dictionary structure of a certain object. For
example, a selector rule to find all the Page Tree Nodes
would need to find the Type key of every object to find if it
is a Page Tree Node. The selected objects are then passed
on to the filtering rules.

3.2.3. Filtering rules. Once the intermediate representa-
tions of selected objects are available, we can find specific
structures of interest. Our filtering mechanism can extract
specific objects based on dictionary keys or array indices.
For example, we may want to filter out objects missing a
particular key or inspect the type of the value corresponding
to a key. Our reducer API supports several built-in functions
to find objects within an outer object.

We list a few of the filtering rules we provide as a part
of the reducer API.

• Delete a key from a dictionary: This rule is use-
ful when some data needs to be redacted: such as
personally identifiable data in the file metadata.

• Select particular keys from dictionary or array:
This rule is useful when we need to replace specific
keys or array locations. The transformed type is
defined separately in the transformer.

• Select version string: The version string is specified
in the file header and the Catalog dictionary. Hence,
a modification to the version string needs to reflect in
both locations. Hence, we provide a separate filtering
rule and a corresponding transformer function to aid
in this transformation.

• Select keys in the Catalog/Info dictionary: These
dictionaries are special and are the root nodes.
Hence, we provide a separate way to get access to
keys in these nodes instead of traversing through the
intermediate representation.

3.2.4. Transformer. We provide new values to the filtered
keys or array locations using the transformer functions.
The function follows the syntax where we provide a fil-
tered object O and the object to replace O, O′. Then,
the transformer applies these rules to each filtered object
individually. Finally, we return the modified IR with the
correct transformations applied.

3.2.5. Finding well-formed PDFs. Parsley IR is produced
by the first step of the Parsley PDF parser—the syntax

checker. Hence, to ensure that our Reducer rules can be
applied, we must ensure that the file is syntactically well-
formed. To find well-formed PDF files in our dataset, we
separated the first pass of the PDF parser and ran it over
all files in the dataset. Therefore, we only operate on this
subset of well-formed files from our datasets in the rest of
this paper.

3.3. Parsley Serializer

We built a serializer for the PDF format, starting with
the Parsley IR. The files we generate must be syntactically
valid PDFs to comply with the soundness property we set
for our normalization tools. 2 We implemented our serializer
in less than 200 lines of code in Rust.

We follow a recursive structure to serialize each PDF ob-
ject. First, we traverse the Parsley IR, which contains a hash
map of all object IDs to their corresponding objects. Then,
we identify the type of each of these objects and then call a
recursive function to serialize the internal objects within the
object. For example, dictionaries can be nested. Dictionaries
may also contain other arrays and stream objects.

Name objects in PDF can contain special characters. To
handle these special characters, we included an additional
check to ensure that we escaped these special characters.
Similarly, String objects may also contain special characters
that are escaped using a certain syntax. We escaped all char-
acters in PDF strings to avoid further confusion. However,
this approach makes debugging hard, and the modified files
significantly diverge from the original files.

For Stream objects, we kept the dictionary and the com-
pressed portions intact—not redacting or decompressing any
objects to continue to preserve space. Finally, we remove
all comments from the file by not serializing any comment
objects. We do this because comments, metadata in the info
dictionary, and unused objects collectively contain much
unredacted information.

In summary, our serializer produces files compliant with
the PDF 2.0 syntax. Furthermore, we recursively imple-
mented the Parsley serializer since PDF objects contain
complex types such as streams, dictionaries, and arrays

2. PDF parsers may still reject our modified PDF files for type malfor-
mations originally present or introduced as a part of our reducer rules. We
only ensure that the syntax is correct.

containing other complex or basic types such as boolean,
strings, numbers, and name types. We evaluate our serial-
izer in Section 5 to ensure that the files we generate are
syntactically valid by running our generated files against a
host of PDF parsers.

3.4. Using Meriadoc Recognizer as a feedback loop

We found several bugs in our serialization approach after
running our generated files against the set of parsers in the
Meriadoc recognizer toolset. We list some of the findings
and then discuss how we fixed these issues.

Incorrect understanding of the Size field in the
cross-reference table. The specification says this when
describing the Size field in the PDF file trailer dictionary,
“this value shall be 1 greater than the highest object number
defined in the file.” Unfortunately, in the first version of our
serializer, we wrongly computed these values as the total
number of entries in the Xref table.

Qpdf and Mutool parsers that are a part of the Meriadoc
recognizer spotted this malformation and provided warnings
specifying that the file may be malformed. We subsequently
fixed our serializer to generate these values correctly.

Special characters in the Name and String objects
need to be escaped. The Name type in PDF contains
strings that start with a slash (/). These name types are
extensively used in dictionary keys. To use characters that
are not alphanumeric, we can represent these values using
hexadecimal. For example, the ASCII “+” character would
be denoted as the hexadecimal string “#2B.” Similarly,
names can also include whitespace characters escaped using
this syntax. The specification uses the following example:
Lime#20Green must be interpreted as Lime Green.
Our serializer did not implement this hexadecimal encoding
for these special characters producing the string /Lime
Green in PDF files. This led to several parser errors since
the string Green here does not conform to any PDF type.

Likewise, PDF string objects use octal or hexadecimal
encoding to store special characters. Any parenthesis used in
a string must be balanced and require no special treatment.
However, any special character must be escaped using an
octal syntax \ddd—where ddd is the octal character code.

In an earlier implementation of the serializer, we wrote
the internal string representation to bytes in the PDF objects.
Unfortunately, similar to the case with name objects, special
characters in strings were serialized as is. This led to several
errors due to the incorrect handling of numerous special
characters in these PDF objects. We have subsequently
patched this issue by representing all string characters in
octal encoding.

4. Case Study

Given the age of the PDF formats, several PDF creation
tools have deviated from the specification in various ways.
These deviations expose parser differentials in PDF readers.
In this section, we study several PDF specification violations

and data redaction cases and how we added reducer rules
to handle these patterns and anti-patterns.

4.1. Finding type check errors in PDF datasets

Table 1. PDF TYPE CHECK ERRORS IN PDFS

PDF Errors Occurrences in 1 million files
Incorrect Lang key 1k
Page Tree Node error 20k
Incorrect PageMode keys 500
Null references 5k

We ran the Parsley PDF type checker—closely designed
for the PDF version 2.0 on 1 million PDF files collected
via CommonCrawl and GovDocs digital corpora. We logged
errors we encountered on files in this dataset and clustered
them based on the type of error. Table 1 provides a summary
of all the errors we found and their frequency in our dataset.

As a result of our study, we’ve designed case studies C1-
4 to serve as a way to correct these commonly seen errors
in PDFs. Subsequently, C5, C6, and A1 are other use cases
such as redacting data or generating files that contain errors
for better testing.

4.2. C1: Incorrect Lang key syntax

The language key in the Catalog dictionary aids text
extraction. Some PDF creation tools use incorrect syntax
to describe the language. For example, several files use the
following Catalog dictionary syntax.

<</Names <</Dests 4 0 R>>
/Outlines 5 0 R /Pages 2 0 R
/Lang /en
/Type /Catalog
/PageLayout /OneColumn
/PageMode /UseOutlines>>

This dictionary differs from the running example in only
the /Lang key. The value /en uses the name type in PDF.
However, the specification notes that this field must be a
string—not specifying what readers must do if this field is
incorrect.

The specification does not offer a default value for
this key. Instead, it specifies that if this key is absent,
the language is considered to be unknown. Therefore, we
remove this key from the Catalog dictionary in an attempt
to remove this common anti-pattern from PDF files.

Selector Filtering rule Transformer
Catalog Delete: Lang -

The above table shows our reducer rules to remove
the Lang key since the specification does not provide any
default values for this key. Therefore, we specify that the
filtering rule we apply is a delete operation and specify the
key that must be deleted.

4.3. C2: Missing keys in Page tree nodes

Page tree nodes in PDF files must contain the Kids,
Type, and Count keys. However, we found several PDF
files in the wild with some of these keys missing. When PDF
viewers attempt to walk the page trees in documents with
these malformations, they encounter the page tree nodes
with either the Count or Kids key missing—and often fail
to render the PDF file. The count key holds an integer value.
The kids key stores an array of references to other page tree
nodes or pages. For example, following is an example of a
malformed Page Tree node—differing in some ways from
our running example.

<<
/Kids [6 0 R 25 0 R 33 0 R
35 0 R 38 0 R 45 0 R 49 0 R
57 0 R 60 0 R 63 0 R 66 0 R
68 0 R 70 0 R]
/Type /Pages>>
>>

In the above example, the Count key is missing. Other
variations of this error could be a missing Kids key or both
Kids and Count keys missing.

We transform these malformed page tree node dictionar-
ies using our reducer syntax. We select dictionary objects
where the Type key is set to Pages. Then, we check if
the mandatory keys are present. We consider three cases:

• Both the keys are missing: we create an empty array
for the kids key and set the count key to 0.

• Only the count key is missing: we count the number
of pages in the kids array. We then set the correct
count value. The count value may also be incorrect
in the previous version of the file.

• Only the kids key is missing: we create an entry
for the kids key in the dictionary. We then reset the
count key to 0.

Selector Filtering rule Transformer
Type= Select if Kids Set Kids to []
Pages missing and Count to 0
Type= Select if Count Set Count to
Pages missing Kids.length()

The above reducer rules account for all three cases
we listed. The first rule we list accounts for both cases—
irrespective of whether the Count value is present or not.

4.4. C3: Incorrect PageMode keys

The Catalog dictionary also contains the PageMode
key. The PDF 2.0 specification provides a list of allowed
values for this key. This field can only take the follow-
ing values: UseNone, UseOutlines, UseThumbs, FullScreen,
UseOC, and UseAttachments. Additionally, the specification
also specifies the default value as UseNone.

<</Names <</Dests 4 0 R>>
/Outlines 5 0 R /Pages 2 0 R
/Lang (en-US)
/Type /Catalog
/PageLayout /OneColumn
/PageMode /None>>

We found hundreds of PDF files with incorrect page
mode values not in this list. The code snippet above demon-
strates such a value. So we wrote a reducer rule to rewrite
the Catalog dictionary with the page mode value reverted to
the default value. The serialized PDF does not contain this
malformation and can produce reliable viewer output—since
different PDF readers may handle invalid values differently.

Selector Filtering rule Transformer
Catalog Select: PageMode Replace with:

if not in list UseNone

In our rule, we select the Catalog object and select the
PageMode key in the Catalog. Since this key is optional, it
may not be present—in which case this rule is not applied.
We use an allowlist of the values this key in the Catalog
can take. If the value for this key is not in the allowlist, we
replace it with the default value.

4.5. C4: Removing Null References

Let us consider the second object in the running example
in Section 2.2. In this example, The Dests, Outlines, and
Pages key all have an indirect reference to another object
stored in the same PDF file. However, as we demonstrated
in Table 1, there were several cases where these indirectly-
referenced objects were missing from the file.

Most PDF readers ignore these keys if they are not
mandatory keys. They arrive at this interpretation following
clause 7.3.10 in the PDF 2.0 specification. First, any unde-
fined object is considered to be a Null object. Furthermore,
in a dictionary, if a key is associated with the Null type, we
must treat the dictionary as if this key was absent.

However, this is not easy to implement in a type checker.
Although in the running example, three keys are indirect
references, any key can hold an indirect reference unless
otherwise specified in the specification. For example, the
Lang key could be in its object with the following syntax.

25 0 obj
(en-US)
endobj

To capture clause 7.3.10, we must treat every key as
a disjunction between a Null object and the correct type
definition. We must also include a flag to ensure that the
keys that do not need such a disjunction are skipped.

Instead, we rely on creating reducer rules to remove any
Null references in a PDF dictionary. We iterate over every
object in the Parsley IR and over every key in the dictionary
to find Null references. These objects are then modified to

remove the key with the Null reference. A drawback of
this reducer rule is that we may inadvertently remove a
mandatory key. For example, suppose the Pages key in the
running example holds a reference that does not exist. In
that case, our reducer rule may remove this key from the
dictionary—creating a type check violation since the key is
mandatory.

4.6. C5: Change PDF version

PDF files contain a version string in the header and a
field in the Catalog dictionary. However, if both of these
version strings are not identical, the higher of the two values
takes precedence. If a file’s version needs to be updated,
either of these two values can be updated to a higher version.

We consider the cases of downgrading and upgrading
the version number of a PDF file. For example, we found
that the Caradoc PDF parser [16] and PDFCPU [21] do not
accept files that are higher than version 1.7. Therefore, to run
a PDF file through both these parsers, we must downgrade
to version 1.7 from 2.0.

We provide two reducer functions—both take a list of
old version numbers and a new version number. We rewrite
both the version string in the Catalog and the string in the
header in both cases. We did this to ensure there are no
parser differentials if specific parsers only read one or the
other. We demonstrate our reducer rules below.

Selector Filtering rule Transformer
Version Select if not Replace with:

2.0 2.0
Catalog Select Version Replace with:

if not 2.0 2.0

4.7. C6: Change values in the Info Dictionary

The Info dictionary in a PDF file contains nine optional
fields. It contains metadata such as the title, author, creation
tool, producer, and creation and modification date. Some
PDF creators and conversion tools may add metadata about
a user, such as their name and username, and email ID [6],
[26].

<< /CreationDate (D:20200407135742Z)
/Creator (John Doe; TeX)
/ModDate (D:20200407135742Z)
/PTEX.Fullbanner (This is pdfTeX,
Version 3.14159265-2.6-1.40.20
(TeX Live 2019) kpathsea
version 6.3.1)
/Producer (pdfTeX-1.40.20)
/Trapped /False >>

The above code snippet demonstrates the contents of the
Info dictionary for a file generated from Latex. We see that
it can disclose software versions and creator information in
this dictionary.

Hence, we need mechanisms to redact these keys from
the Info dictionary to ensure that such information is not

exposed when publishing PDF files. Removing these keys
from the dictionary does not render a file invalid since all
of these keys are invalid.

We identify that the author, creator, producer, and cre-
ation date keys can be particularly problematic in expos-
ing details about the origin of a file. Hence, we design
rules to redact these crucial keys to ensure better privacy.
Unfortunately, since the Info dictionary does not have any
mandatory keys, we could not use a selector rule to find it
in the IR. Instead, we rely on the trailer of a PDF file to tell
us which PDF object contains the Info dictionary. Below,
we demonstrate the reducer rules to change the Author and
Creator keys in the Info dictionary.

Selector Filtering rule Transformer
Info Select Author and Replace with:

Creator Manul and
Bobcat

4.8. A1: Adversarial file generation

We propose another application of the Parsley Reducer
API—generating files with deliberate errors to understand
if parsers can detect anti-patterns and clear specification
violations. For example, we generated a test case to inject
an incorrect object ID in the Kids array of every Page Tree
Node dictionary in a PDF file.

Since PDF parsers often ignore missing objects, we did
not randomly inject a nonexistent object ID. Instead, we
append the Catalog or Root dictionary ID to the Kids array.
Unfortunately, this action leads to malformed PDFs in three
ways.

First, the Kids field in a Page Tree Node must point
at other Page Tree Nodes or a Page object—not a Catalog
dictionary. Any parser that checks the well-formedness of
this tree structure must find this error in the syntax of the
tree.

Second, a naive PDF parser that recursively walks the
Page Tree structure can enter an infinite loop. As a result, we
could trigger a denial of service attack against PDF parsers
that do not keep a list of objects already checked.

Finally, a naive text extraction tool can run into an
infinite loop in such an infinite tree structure and generate
the same text repeatedly. This way, the extracted text would
differ from the text extracted from other tools—leading to
text-extraction differentials.

Next, we randomly selected 4200 PDF files from our
dataset to evaluate our adversarial file generation use case.
Finally, we ran each generated file through Qpdf and Mutool
clean to see if these tools found our injected malformation.

Table 2. TESTING FILES WE GENERATED WITH ADVERSARIAL RULES
AGAINST PDF PARSERS. DATASET INCLUDED 4200 PDF FILES

RANDOMLY SELECTED.

Cases Mutool Qpdf
Files Rejected previous accepted 3177 221
Files Timed out, previously ran correctly 18 1

As shown in Table 2, we were able to force qpdf to run
over the timeout value (one minute) for one file when the
original (unmodified) file runs efficiently within the timeout.
The original file ran in 50 seconds, while the modified
file did not terminate after running over three minutes in
multiple tests. Similarly, we found 18 modified files that
caused an infinite loop in the Mutool clean command. Each
of these files ran in less than 10 seconds in the unmodified
case.

Upon more investigation, we found that this issue was
fixed in the latest Mutool release 1.19, following a report in
2020 [30]. However, the Mutool shipping with the package
managers on most operating systems is version 1.16. There-
fore, all versions of Mutool before 1.19 are vulnerable to a
denial of service attack, where a PDF file with a wellformed
content stream can cause an infinite loop.

However, we also found that Qpdf does not flag most of
the adversarial files we generated as malformed. In contrast,
Mutool overwhelmingly finds them malformed with the er-
ror “non-page object in page tree (Catalog).” Qpdf provides
a warning with the message “expected /Type /Pages, found
something else” for the files it rejects.

4.9. Developer effort

Table 3 demonstrates the lines of code needed to use the
Parsley normalization tools to apply transformations of vary-
ing degrees of difficulty. Using the Reducer API requires
some degree of understanding of the PDF specification since
we require the developers to specify the transformed type
in cases where data is replaced.

We observe that the harder cases of modifying the Page
Tree Nodes using cases C1 and A1 require over 100 lines
of code to be added. This is because we must account for
many combinations of missing keys in Page Tree Nodes,
causing an increase in the lines of code. However, the cases
of redacting data in objects or replacing them require far
fewer lines of code.

Table 3. DEVELOPER EFFORT NEEDED TO WRITE REDUCER RULES

Case Lines of code added Complexity
C1 15 Easy
C2 150 Hard
C3 32 Easy
C4 65 Hard
C5 15 Easy
C6 55 Medium
A1 120 Hard

4.10. The need for a reducer

Some of the examples we discussed in our case studies
were simple—especially the version editing and fixing page
modes. However, C2, C4, and C5 are complex rewriting
rules where simple grep- or m4-like expressions would not
suffice. For example, to redact keys from PDF dictionary
objects, we need to parse the dictionary as a whole and then

select the keys for modifications. These dictionaries can also
be recursive: dictionaries may contain other dictionaries,
streams, or arrays either inline or as a reference.

5. Evaluation

We apply the reducer rules for C1, C2, C3, and C4 as a
part of the Parsley reducer since these rules made significant
modifications and correct malformed constructs in PDFs.
We evaluate the Parsley reducer and serializer to answer the
following questions.

• Does the reducer fix bugs and malformations in PDF
files?

• How does the Parsley reducer compare with other
PDF cleanup tools?

• Do text extraction tools produce the similar output
for the original and transformed PDF files?

5.1. Dataset

We used two datasets of 10,000 files each. Both these
datasets contain files randomly selected from 1 million files
collected from GovDocs [15] and CommonCrawl [11].3
These 20,000 PDF files are representative of a real-world
sampling—randomly selected from 1 million files.

We then filtered out the well-formed PDFs from these
datasets using the methodology described in Section 3.2.5.
As a result, we found that Dataset 1 contained 6753 well-
formed files, whereas Dataset 2 comprised 7171 well-formed
files. We used the files from both datasets to evaluate our
Parsley reducer and serializer methodology.

5.2. Parsley Reducer fixups

This section examines the fixes and changes made by
our Parsley reducer. We closely observe files in each of
the categories specified in Section 4. Unfortunately, most
popular PDF readers cannot render PDF files suffering from
C2.

Parsley reducer and
serializer PDF File

Parsley
transformed

PDF file

Mutool Clean

MuPDF

Qpdf

PDFMiner

Is the transformed
PDF file valid?

Figure 3. We attempt opening an original PDF file and the transformed
file using three PDF tools. We log cases where previously malformed files
now open using the various readers.

3. These datasets were collated by Dan Becker of Kudu Dynamics for
the DARPA SAFEDOCS project.

Figure 3 outlines our approach to examining the fixes
made by the Parsley normalization tools. We rely on the
Meriadoc recognizer to compare the parser output of orig-
inal PDF files and Parsley modified PDF files. After run-
ning these PDF files through the Parsley normalization
tools, we tried to open the modified files using Qpdf [8],
PDFMiner [34], and Mutool [5].

Table 4. COMPARING THE OUTPUT OF VARIOUS PARSERS ON ORIGINAL
PDF FILES AND THE PARSLEY GENERATED FILES.

Evaluation tool Fixups after Errors after
transformation transformation

Dataset 1 Dataset 2 Dataset 1 Dataset 2
MuPDF 48 31 0 2
Mutool clean 726 96 0 0
Qpdf 5 16 1 2
PDFMiner 217 401 11 25

Table 4 shows the results of our evaluation. We found
that when we ran Mutool clean on these files, many files
in both datasets were fixed. Similarly, PDFMiner also fixes
a number of files in our datasets with malformations—
especially ones following the pattern we described in Case
Study C2.

However, we also observe that PDFMiner throws errors
on some files that were earlier valid. PDFMiner errors were
ASCII decoding or parser errors exposed in the parser. None
of the other parsers threw errors on the files PDFMiner failed
to parse. We will explore these parser errors in PDFMiner
in more detail and suggest fixes in future work.

5.3. Does the serializer work correctly?

In this paper, we set out with the goal of achieving
safe normalizations. To test our claim, we compare the
text extraction output for the original PDF file and the
transformed PDF file to ensure that our Parsley serializer
works correctly. We use three PDF to text tools: Parsley’s
text extractor, PDFMiner’s pdf2txt [34], and Ghostscript [4].
Figure 4 demonstrates our overall approach of comparing
text output.

Parsley reducer and
serializer PDF File

Parsley
transformed

PDF file

ghostscript: compare
text output

MuPDF: compare
text output

Parsley text
extractor: compare

output

Figure 4. We compare the text extraction output from the original PDF file
and the transformed PDF file to ensure we did not damage the PDF files
during the transformation.

Mismatches in extracted text. There can be two reasons
the extracted text did not match the original text. First, our
fixes can provide access to new objects in the PDF file. The
text extraction tool may have encountered errors, skipping
these objects earlier. Second, the modified file could now
contain errors we introduced. Our Parsley serializer could
introduce certain bugs in the PDF objects.

Hence, we differentiate between these two mismatches
by first comparing the extracted text from the original and
modified PDF files. If there was a mismatch, we see if we
extracted more text or lesser text than the original file. If we
extracted more, we would flag this as a fixup. Similarly, we
flag cases with lesser text extracted as errors we introduced.

Tool

0

50

100

150

200

250

Parsley Ghostscript PDFMiner

Fixed Error

Dataset 1 Text Extraction comparison

Figure 5. Text Extraction results from Dataset 1 (6753 files). This chart
only displays mismatches between running a text extraction tool on the
original file and running the same tool on the Parsley-modified file.

Text Extraction tools

N
um

be
r o

f f
ile

s

0

100

200

300

400

500

Parsley Ghostscript PDFMiner

Fixed Error

Dataset 2 Text Extraction comparison

Figure 6. Text Extraction results from Dataset 2 (7171 files). This chart
only displays mismatches between running a text extraction tool on the
original file and running the same tool on the Parsley-modified file.

Figure 5 and Figure 6 showcase the results of our
text extraction comparison experiments. Since these datasets
contain very dissimilar PDFs, we see a significant difference
in the results. In Dataset 1, we observe that Ghostscript
produces more text in over 200 files while throwing errors
in 9 files. In contrast, in Dataset 2, we see that PDFMiner
generates more text in over 400 modified files than the
original files.

These text extraction tools use different algorithms to
traverse the page tree nodes and extract text. Therefore, we
employed three separate tools to observe different fixes and
malformations. We demonstrate that files we’ve modified
generate either the same amount of text or more text in
almost all cases—producing safe transformations.

Why do text extraction tools generate more text. We
applied case study reducer rules C1 to C4 to evaluate our
normalization approach. As we discussed earlier, these rules
fix malformations we found in PDF files. For example,
C2 finds page tree nodes that are malformed and missing
mandatory keys. However, the behavior of text extraction
tools on these malformed page tree nodes is not defined.
Fixing these malformed page tree nodes allows the text
extraction tools to proceed further down a page tree and
render text from more pages in the tree.

5.4. Comparing Parsley Reducer with caradoc
clean and mutool clean

Other than using the Parsley reducer, we also ran
each file in our Dataset 2 through caradoc clean and
mutool clean. We then validated the transformed PDFs
generated by all the three transformation tools through the
Meriadoc recognizer. We designed this experiment to check
whether Caradoc and Mutool can fix our identified issues.

Parsley reducer and
serializer

Mutool clean

Caradoc clean

PDF File
Mutool

transformed
PDF file

Parsley
transformed

PDF file

Caradoc
transformed

PDF file

Meriadoc
Recognizer

Output

Meriadoc
Recognizer

Output

Figure 7. Comparing the transformed files of the Parsley Reducer to files
generated by Caradoc clean and Mutool clean.

Figure 7 shows our experimental approach. After trans-
forming the PDF files using three different tools—one of
which we built—we run the transformed files through the
Meriadoc recognizer with the Qpdf and Mutool parsers.

Table 5. COMPARISON OF CLEANUP TRANSFORMATIONS APPLIED BY
PARSLEY, CARADOC, AND MUTOOL AGAINST QPDF AND MUTOOL ON

DATASET 2.

Serializer Fixups after Errors after
transformation transformation

Caradoc 24 0
Mutool 24 32
Parsley 47 4

Table 5 presents the results of our comparison. We
find that Caradoc and Mutool both fix files in our dataset.
We also find that our Parsley reducer fixes more files that
were previously rejected by Qpdf or Mutool than Mutool

clean and Caradoc. We investigated the bugs introduced by
Mutool clean (32 across Qpdf and Mutool). We found that
several of these files generated by Mutool clean were empty,
containing no data.

Additionally, we found that a particular type of file X1

was initially rejected by Mutool but accepted by Qpdf. Mu-
tool complains about several issues, ranging from a broken
Xref table, content stream syntax errors, and a corrupt JPEG
data segment. Here is a snippet of the error log from running
Mutool on X1.

$ mutool clean -s -d x_1
error: cannot recognize xref format
warning: trying to repair broken xref
warning: repairing PDF document
warning: PDF stream Length incorrect
error: syntax error in content stream
error: unknown keyword: ’e’
error: syntax error in content stream
error: syntax error in content stream
error: syntax error in content stream
error: syntax error in content stream
error: syntax error in content stream
error: syntax error in content stream
error: unknown keyword: ’r7529.751’
error: syntax error in content stream
error: syntax error in content stream
error: zlib error: invalid block type
warning: read error; treating as end of
file
error: syntax error in content stream
Corrupt JPEG data: premature end
of data segment

Mutool does, however, produce a modified PDF file
X

′

1. Mutool and Qpdf are both also unable to open the
file, saying it requires a password—when Qpdf was able
to process the original file—and several PDF readers could
display the original file.

$ mutool clean -s -d x_1_prime
error: cannot authenticate password:
x_1_prime

Similarly, we also investigated the four files that Parsley
produced that were malformed. We found that these files
contained referenced objects but were not present in the file.
Mutool rejected these files on these grounds.

5.5. Meriadoc recognizer feedback loop

As we discuss in Section 3.4, we used the Meriadoc
Recognizer to find errors in our serializer and then fixed
them. Table 6 shows that the number of errors introduced
by the Parsley serializer according to both Qpdf and Mutool
reduced in the second run, while the number of fixed files
marginally increased. This table considers a file to be fixed
if the original file was rejected and the modified version was
considered valid.

Table 6. DEMONSTRATING THE FEEDBACK LOOP FROM MERIADOC TO
PARSLEY ON DATASET 2

Run Qpdf MuPDF
Fixed Errors Fixed Errors

1 24 15 33 101
2 26 1 35 2

5.6. Summary

In summary, we evaluated our Parsley reducer approach
to ensure the following.

• First, we evaluated files generated by Parsley to
ensure we do not introduce many malformations in
PDF files as judged by a selection of PDF parsers.

• Next, we ran multiple text-extraction tools on our
generated PDF files. We found that in a vast majority
of cases, we generated more text or the same amount
of text as the original file. We have an implementa-
tion that is capable of performing safe normalization.

• Finally, we compared the fixing capabilities of the
Parsley reducer approach to popular tools such as
Caradoc and Mutool clean.

6. Discussion

6.1. Reducing Parser Differentials

Since more PDFs fail to include the “Creator” and “Pro-
ducer” tags in the Info dictionary, it is not easy to pinpoint
the software used to create a particular file. Therefore, tools
such as the PDF observatory have included a classifier to
find the software used to create a given PDF based on
specific structural properties of PDF files [13]. The Parsley
PDF checker is strict and can pinpoint fine-grained mal-
formations such as missing keys in dictionaries, wrong type
implementations, and missing indirect references. Hence, we
believe we can use the PDF observatory in conjunction with
the Parsley PDF checker to design Reducer rules to remove
entire classes of malformations.

In other words, different PDF tools produce different
types of malformations. Therefore, we can transform the
unlabeled dialects of the PDF specifications that these PDF
tools implement and normalize them into a compliant di-
alect of the PDF format. By transforming several different
malformations introduced by a variety of tools into a single,
normalized form that is compliant with the PDF specifica-
tion, we are ensuring that we encounter fewer parser dif-
ferentials. However, Reducer rules can be used to formalize
the de facto specification implemented by a PDF tool and
to formalize grammar drifts.

6.2. Reducing Developer Effort

Our Parsley Reducer API follows a mechanism similar
to a graceful “exception handling” mechanism where we
transform data using customized handlers. Large classes of

document malforms can be represented using these reducer
rules and would not require updates to large codebases.
Our methodology standardizes the methods of transforming
patterns in documents.

In the future, we wish to explore generating these re-
ducer rules dynamically. We need to use a PDF type checker
to find out where specification deviations occur. Such a
type checker must not stop the type checking process once
it encounters an error—instead continuing to process other
objects in the file. Such a process would allow the ability
to find all deviations in a file rather than just the first.

We would then need to understand how to fix a particular
error. For example, if an object is missing a Type key, but
holds every other key, essentially allowing us to predict what
the dictionary type is, then we must be able to patch the
dictionary with the Type key. However, if a dictionary holds
a key that must hold a value from a set of values, such as
PDF versions, reverting to a default value would be a direct
fix.

6.3. Errors that Caradoc and Mutool fix

We closely inspect the transformations Mutool clean and
Caradoc apply in their tools. We find that the fixes by Mutool
clean in our dataset fit broadly into three categories. First, we
find that Mutool clean fixes truncated files without a cross-
reference table or trailer. It calculates the correct offsets and
inserts a valid cross-reference table and a trailer.

Second, Mutool fixes files with incorrect string encod-
ings, causing errors. This malformation is similar to the
ones we introduced in an earlier version of the Parsley
serializer that we subsequently fixed (Section 3.4). The
Mutool clean command adds the correct octal encoding to
special characters that were previously unescaped.

Finally, we observe that Mutool fixes several off-by-
one errors in stream encoding and compression. Given the
number of compression, image, and font libraries, such off-
by-one errors causing parser differentials are fairly common
in PDF files.

We found that Caradoc fixed files in which Mutool
could not find objects. Caradoc expands compressed object
streams to place all the objects from these compressed
streams in the PDF file. We find that several errors caused
by compression errors are fixed by decompressing object
streams.

6.4. Comparing visual output

In our evaluation, we compared the text output of the
original file and the modified files to ensure that we did not
break the file in a way text extraction tools can no longer
extract any text. Another possible evaluation approach is
to compare the visual output of the PDF files [17], [23],
[39]. There have been several attempts to compare the visual
rendering of PDF files using machine learning or a pixel-
by-pixel comparison. In future work, we will explore such
a comparison as an additional soundness measure.

7. Related Work

This section relates our Parsley normalization approach
and Meriadoc with other approaches. Caradoc [16] and
ICARUS [13] are the closest tools to our approach, and they
set out with similar goals. We ensure that we can support
an API to allow developers to script the rewriting process.

7.1. Caradoc

Caradoc [16] is a PDF parser freely available on
GitHub. Caradoc implements three passes to check PDF
files. For lexical analysis and parser generation, Caradoc
uses MENHIR and OCAMLLEX. They implement a strict
type checker and a content stream checker for the other two
passes. This way, the Parsley PDF parser follows a similar
overall architecture to that of Caradoc.

Caradoc includes a normalizer to patch broken PDF
files. In Section 5.4, we tested the efficiency of this normal-
izer by running files through the normalizer in an additional
pass before running the PDF file through various parsers.
Additionally, we also discuss the errors that the Caradoc
tools fix in the generated files in Section 6.3.

Caradoc also checks a PDF file for cycles. They im-
plement indirect references in files as a graph and look for
cycles in these structures. A PDF file with cycles can lead to
infinite recursion or nontermination if not handled carefully.

This paper goes beyond the normalization work Caradoc
does by reducing developer effort by providing a struc-
tured format with an API to apply transformations. We
also demonstrate several use cases such as adversarial file
creation that Caradoc does not support.

7.2. Other PDF fixing tools

Most of the prior work is focused on detecting mali-
cious PDF files using various techniques such as machine
learning [14], [28] and structural features [35], [37]. Cowger
et al. presented ICARUS, a tool to extract the de-facto
specification of the PDF format from a corpus [13]. They
also propose converting a PDF file to a safe subset. They
require users to define bi-directional lenses to convert a
file from one version of the specification to another. This
ICARUS approach to using lenses is the closest related
work to our Reducer API. Instead, we take the approach
of allowing developers to transform objects in a file with
more flexibility. We also created a new serializer from the
Parsley IR to a PDF file to only serialize objects in use—and
to avoid polyglot files [7], [25].

7.3. PDF comparison tools

There are multiple tools available to compare the output
of various PDF parsers on one PDF file. These tools are
not much different from VirusTotal—a website that runs a
host of antivirus scanning engines to make a decision [20].
Allison et al. built a file observatory to analyze the properties

and syntax of various PDF files [1], [2]. For example, they
find misspellings of various fields in PDF files by using the
Levenshtein edit distance. They were also able to identify
the tools used to create a PDF based on the syntax it follows.

Cowger et al. presented the PDF observatory—a tool
to run a set of parsers against each file in a corpus [13].
For each file, they then iterate over stdout and stderr
to decide whether the parser rejected a file or accepted
it. The Meriadoc recognizer follows a similar approach to
comparing parser output.

Ambrose et al. introduce the idea of topological differ-
ential testing, a mechanism to decipher the behavior of a
set of programs on a corpus of inputs [3]. They use this
mechanism to learn the de-facto specification of the input
format implemented by these programs. Meriadoc uses a
similar consensus approach to finding patterns but does not
extract a de-facto specification. The PDF observatory and
topological differential testing could be used in place of
Meriadoc since all three projects share similar goals and
approaches.

8. Conclusion

This paper presents a novel approach to a principled,
scriptable rewriting of PDF objects. First, we demon-
strated our normalization tool on a set of case studies
we designed—informed by our research on a large corpus
of PDF files. Then, we evaluated the normalization tools
against two datasets of PDF files and demonstrated that text
extraction tools generate more text from the modified files
than the original files.

Much of the future work remains. As we discussed
in Section 3.3, our serializer generates a normalized PDF
file that contains all the in-use objects in the original file.
However, we remove linearization and incremental updates,
forcing the modified PDF to diverge significantly from the
original file. We will explore how to provide users with flags
to support these features in future work.

We will explore another direction of creating a tight-
nit feedback loop between the format-aware tracing tools
of Meriadoc and our Reducer API. With such a tool, we
can dynamically generate these reducer rules with little
developer input to fix commonly seen malformations in
PDFs.

Acknowledgments

We want to thank Linda Briesemeister and Eric Bond for
their insightful discussions, help, and support in putting this
paper together. We also want to thank Prashanth Mundkur,
Sameed Ali, and Natarajan Shankar for their help in building
the Parsley PDF checking engine. We thank the anony-
mous reviewers and Sean Smith for their suggestions—their
changes have dramatically improved the final manuscript.

This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contract Nos. HR001119C0075 and HR001119C0074.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA).

References

[1] Tim Allison, Wayne Burke, Valentino Constantinou, Edwin Goh,
Chris Mattmann, Anastasija Mensikova, Philip Southam, Ryan Stone-
braker, and Virisha Timmaraju. Research report: Building a wide
reach corpus for secure parser development. In 2020 IEEE Se-
curity and Privacy Workshops (SPW), pages 318–326, 2020. DOI
10.1109/SPW50608.2020.00066.

[2] Tim Allison, Wayne Burke, Chris Mattmann, Anastasija Mensikova,
Philip Southam, and Ryan Stonebraker. Research report: Building a
file observatory for secure parser development. In 2021 IEEE Security
and Privacy Workshops (SPW), pages 121–127, 2021. DOI 10.1109/
SPW53761.2021.00025.

[3] Kristopher Ambrose, Steve Huntsman, Michael Robinson, and
Matvey Yutin. Topological differential testing. arXiv preprint
arXiv:2003.00976, 2020.

[4] Artifex Software, Inc. Ghostscript: an interpreter for the postscript
language and pdf files. https://www.ghostscript.com/doc/current/Use.
htm, 2016.

[5] Artifex Software, Inc. Mupdf: a lightweight pdf, xps, and e-book
viewer. https://mupdf.com/docs/manual-mutool-clean.html, 2016.

[6] Tuomas Aura, Thomas A Kuhn, and Michael Roe. Scanning elec-
tronic documents for personally identifiable information. In Proceed-
ings of the 5th ACM workshop on Privacy in electronic society, pages
41–50, 2006. DOI 10.1145/1179601.1179608.

[7] Adam Barth, Juan Caballero, and Dawn Song. Secure content sniffing
for web browsers, or how to stop papers from reviewing themselves.
In 30th IEEE Symposium on Security and Privacy, pages 360–371,
2009. DOI 10.1109/SP.2009.3.

[8] Jay Berkenbilt. Qpdf: A content-preserving pdf transformation sys-
tem. https://github.com/qpdf/qpdf, April 2008.

[9] Andrew R Bernat and Barton P Miller. Anywhere, any-time binary in-
strumentation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools, pages 9–16, 2011.
DOI 10.1145/2024569.2024572.

[10] Sergey Bratus, Trey Darley, Michael Locasto, Meredith L Patterson,
Rebecca bx Shapiro, and Anna Shubina. Beyond planted bugs
in” trusting trust”: The input-processing frontier. IEEE Security &
Privacy, 12(1) pages 83–87, 2014. DOI 10.1109/MSP.2014.1.

[11] Christian Buck, Kenneth Heafield, and Bas Van Ooyen. N-gram
counts and language models from the common crawl. In LREC,
volume 2, page 4. Citeseer, 2014.

[12] James Clark, Steve DeRose, et al. Xml path language (xpath), 1999.

[13] Sam Cowger, Yerim Lee, Nichole Schimanski, Mark Tullsen, Walter
Woods, Richard Jones, EW Davis, William Harris, Trent Brunson,
Carson Harmon, et al. Icarus: Understanding de facto formats by way
of feathers and wax. In 2020 IEEE Security and Privacy Workshops
(SPW), pages 327–334. IEEE, 2020. DOI 10.1109/SPW50608.2020.
00067.

[14] Bonan Cuan, Aliénor Damien, Claire Delaplace, and Mathieu Valois.
Malware detection in pdf files using machine learning. In SECRYPT
2018-15th International Conference on Security and Cryptography,
page 8p, 2018.

[15] Digital Corpora. Govdocs1 — (nearly) 1 million freely-redistributable
files. http://downloads.digitalcorpora.org/corpora/files/govdocs1/by
type/files.jpeg.tar, 2021.

[16] Guillaume Endignoux, Olivier Levillain, and Jean-Yves Migeon.
Caradoc: A pragmatic approach to pdf parsing and validation. In
IEEE Security and Privacy Workshops (SPW), pages 126–139. Ieee,
2016.

[17] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D
Hansen, and Jonathan C Roberts. Visual comparison for information
visualization. Information Visualization, 10(4) pages 289–309, 2011.
DOI 10.1177/1473871611416549.

[18] Lars Hermerschmidt, Stephan Kugelmann, and Bernhard Rumpe.
Towards more security in data exchange: Defining unparsers with
context-sensitive encoders for context-free grammars. In IEEE Se-
curity and Privacy Workshops, pages 134–141. IEEE, 2015. DOI
10.1109/SPW.2015.29.

[19] Lars Hermerschmidt, Stephan Kugelmann, and Bernhard Rumpe.
Towards more security in data exchange: Defining unparsers with
context-sensitive encoders for context-free grammars. In 2015
IEEE Security and Privacy Workshops, pages 134–141, 2015. DOI
10.1109/SPW.2015.29.

[20] Hispasec Sistemas. Virustotal. http://www.virustotal.com/, June 2004.

[21] Horst Rutter et al. pdfcpu: a Go PDF processor.
https://github.com/pdfcpu/pdfcpu, 2017.

[22] Brian W Kernighan and Dennis M Ritchie. The M4 macro processor.
Bell Laboratories Murray Hill, NJ, 1977.

[23] Doron Kletter. Effective system and method for visual document
comparison using localized two-dimensional visual fingerprints, De-
cember 6 2016. US Patent 9,514,103.

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. Acm sigplan notices, 40(6) pages 190–200,
2005. DOI 10.1145/1064978.1065034.

[25] Jonas Magazinius, Billy K Rios, and Andrei Sabelfeld. Polyglots:
crossing origins by crossing formats. In Proceedings of the ACM
SIGSAC conference on Computer & communications security, pages
753–764, 2013. DOI 10.1145/2508859.2516685.

[26] Jens Müller, Dominik Noss, Christian Mainka, Vladislav Mladenov,
and Jörg Schwenk. Processing dangerous paths. In Network and
Distributed Systems Security Symposium. NDSS, 2021.

[27] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. ACM Sigplan notices,
42(6) pages 89–100, 2007. DOI 10.1145/1273442.1250746.

[28] Nir Nissim, Aviad Cohen, Robert Moskovitch, Asaf Shabtai, Matan
Edri, Oren BarAd, and Yuval Elovici. Keeping pace with the creation
of new malicious PDF files using an active-learning based detection
framework. Security Informatics, 5(1) pages 1–20, 2016. DOI 10.
1186/s13388-016-0026-3.

[29] Derek Noonburg. Poppler, a pdf rendering library. https://github.com/
freedesktop/poppler.

[30] Steffen Nurpmeso. Mutool clean: Endless loop. https://bugs.
ghostscript.com/show bug.cgi?id=703092, 2020.

[31] PDF Association. ISO 32000-2 (PDF 2.0). Technical report, Technical
report, International Organization for Standardization, 2017.

[32] Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, and Heinz
Züllighoven. Serializer. 1997.

[33] Marko A Rodriguez. The gremlin graph traversal machine and
language (invited talk). In Proceedings of the 15th Symposium
on Database Programming Languages, pages 1–10, 2015. DOI
10.1145/2815072.2815073.

[34] Yusuke Shinyama. Pdfminer: a text extraction tool for PDF docu-
ments. https://pypi.org/project/pdfminer/, 2020.

[35] Charles Smutz and Angelos Stavrou. Malicious pdf detection using
metadata and structural features. In Proceedings of the 28th annual
computer security applications conference, pages 239–248, 2012.
DOI 10.1145/2420950.2420987.

http://dx.doi.org/10.1109/SPW50608.2020.00066
http://dx.doi.org/10.1109/SPW53761.2021.00025
http://dx.doi.org/10.1109/SPW53761.2021.00025
https://www.ghostscript.com/doc/current/Use.htm
https://www.ghostscript.com/doc/current/Use.htm
https://mupdf.com/docs/manual-mutool-clean.html
http://dx.doi.org/10.1145/1179601.1179608
http://dx.doi.org/10.1109/SP.2009.3
https://github.com/qpdf/qpdf
http://dx.doi.org/10.1145/2024569.2024572
http://dx.doi.org/10.1109/MSP.2014.1
http://dx.doi.org/10.1109/SPW50608.2020.00067
http://dx.doi.org/10.1109/SPW50608.2020.00067
http://downloads.digitalcorpora.org/corpora/files/govdocs1/by_type/files.jpeg.tar
http://downloads.digitalcorpora.org/corpora/files/govdocs1/by_type/files.jpeg.tar
http://dx.doi.org/10.1177/1473871611416549
http://dx.doi.org/10.1109/SPW.2015.29
http://dx.doi.org/10.1109/SPW.2015.29
http://www.virustotal.com/
http://dx.doi.org/10.1145/1064978.1065034
http://dx.doi.org/10.1145/2508859.2516685
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1186/s13388-016-0026-3
http://dx.doi.org/10.1186/s13388-016-0026-3
https://github.com/freedesktop/poppler
https://github.com/freedesktop/poppler
https://bugs.ghostscript.com/show_bug.cgi?id=703092
https://bugs.ghostscript.com/show_bug.cgi?id=703092
http://dx.doi.org/10.1145/2815072.2815073
https://pypi.org/project/pdfminer/
http://dx.doi.org/10.1145/2420950.2420987

[36] Ryan Speers, Paul Li, Sophia d’Antoine, and Michael Locasto. Anal-
ysis methods and tooling for parsers. https://www.riverloopsecurity.
com/blog/2020/06/safedocs-pdf-analysis-methods-intro/, June 2020.

[37] Nedim Šrndic and Pavel Laskov. Detection of malicious pdf files
based on hierarchical document structure. In Proceedings of the 20th
Annual Network & Distributed System Security Symposium, pages
1–16. Citeseer, 2013.

[38] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zu-
genmaier. Shield: Vulnerability-driven network filters for preventing
known vulnerability exploits. SIGCOMM Comput. Commun. Rev.,
34(4) page 193–204, aug 2004. DOI 10.1145/1030194.1015489.

[39] John W Webster III. Method and apparatus for visually comparing
files in a data processing system, August 25 1992. US Patent
5,142,619.

[40] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon
Kim, Rajit Manohar, and Robert Soulé. Zerializer: Towards zero-copy
serialization. In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems, pages 206–212, 2021. DOI 10.1145/3458336.3465283.

https://www.riverloopsecurity.com/blog/2020/06/safedocs-pdf-analysis-methods-intro/
https://www.riverloopsecurity.com/blog/2020/06/safedocs-pdf-analysis-methods-intro/
http://dx.doi.org/10.1145/1030194.1015489
http://dx.doi.org/10.1145/3458336.3465283

	Introduction
	Definitions

	Background
	PDF Primer
	Running Example
	Meriadoc Recognizer

	Parsley Normalization Tools
	Background
	Parsley Reducer
	Parsley IR
	Selector
	Filtering rules
	Transformer
	Finding well-formed PDFs

	Parsley Serializer
	Using Meriadoc Recognizer as a feedback loop

	Case Study
	Finding type check errors in PDF datasets
	C1: Incorrect Lang key syntax
	C2: Missing keys in Page tree nodes
	C3: Incorrect PageMode keys
	C4: Removing Null References
	C5: Change PDF version
	C6: Change values in the Info Dictionary
	A1: Adversarial file generation
	Developer effort
	The need for a reducer

	Evaluation
	Dataset
	Parsley Reducer fixups
	Does the serializer work correctly?
	Comparing Parsley Reducer with caradoc clean and mutool clean
	Meriadoc recognizer feedback loop
	Summary

	Discussion
	Reducing Parser Differentials
	Reducing Developer Effort
	Errors that Caradoc and Mutool fix
	Comparing visual output

	Related Work
	Caradoc
	Other PDF fixing tools
	PDF comparison tools

	Conclusion
	References

