
PolyDoc: Surveying PDF Files from the PolySwarm network

Prashant Anantharaman, Robert Lathrop, Rebecca “bx” Shapiro, Michael E. Locasto
Narf Industries

Abstract—Complex data formats implicitly demand complex
logic to parse and apprehend them. The Portable Document
Format (PDF) is among the most demanding formats because
it is used as both a data exchange and presentation format,
and it has a particularly stringent tradition of supporting in-
teroperability and consistent presentation. These requirements
create complexity that presents an opportunity for adversaries
to encode a variety of exploits and attacks.

To investigate whether there is an association between
structural malforms and malice (using PDF files as the example
challenge format), we built PolyDoc, a tool that conducts
format-aware tracing of files pulled from the PolySwarm
network. The PolySwarm network crowdsources threat in-
telligence by running files through several industry-scale
threat-detection engines. The PolySwarm network provides a
PolyScore, which indicates whether a file is safe or malicious,
as judged by threat-detection engines. We ran PolyDoc in a live
hunt mode to gather PDF files submitted to PolySwarm and
then trace the execution of these PDF files through popular
PDF tools such as Mutool, Poppler, and Caradoc.

We collected and analyzed 58,906 files from PolySwarm.
Further, we used the PDF Error Ontology to assign error
categories based on tracer output and compared them to the
PolyScore. Our work demonstrates three core insights. First,
PDF files classified as malicious contain syntactic malforma-
tions. Second, “uncategorized” error ontology classes were
common across our different PDF tools—demonstrating that
the PDF Error Ontology may be underspecified for files that
real-world threat engines receive. Finally, attackers leverage
specific syntactic malformations in attacks: malformations that
current PDF tools can detect.

1. Introduction

The Portable Document Format (PDF) is complex yet
ubiquitous [22]. However, given the size of the specifica-
tion and how long it has been in use, it is a notoriously
hard format to parse correctly. As a result, parsers often
deviate from the specification and produce errors on entirely
different sets of files [3].

PDF files also represent an exploit delivery mecha-
nism [30], [38], [41]. A PDF tool that processes a file may
crash due to a bug in the parsing logic triggered by a slight
deviation from the specification—in which case the error
message the parser outputs would be helpful to identify
what malformation may exist [1]. An attacker could also

carefully craft an exploit that leverages some vulnerable
PDF libraries [9].

Attackers may engineer exploits to target a software
application’s vulnerable code and conditions. However, at
the same time, the overall PDF file may be generally well-
formed, meaning that the input “carrier” of the said exploit,
such as a protocol message or data file consumed by the
target software application, is syntactically valid. What is
unclear is whether crafted exploits, so carefully wrought
in one dimension, are also carefully constructed in another
and to what extent the rules of a complex format may either
restrict or permit such compliance with the general rules of
the format.

In other words, are exploits necessarily contained within
“bad” files? Is there something about most vulnerabilities
and exploits that requires the conveying content to be ill-
formed? Intuition could swing either way on this score:
malicious files could exist that are very well-formed and
indistinguishable from normal or benign files [31], [33],
also known as werewolf files [9], [23] (modulo the exploit
code itself, as Song et al. [44] and Mason et al. [34] have
shown). On the other hand, exploits could be something
that cannot be cleanly wrapped or represented as a mostly-
normal instance of the given protocol or file format—and
good, compliant parsers may be able to identify them.1

This paper considers the hypothesis that malicious files,
i.e., files containing malware, do not possess many (or any)
structural or syntactic malformations. However, it is not
evident that the opposite inference is valid. It may be true
that malicious files may either be very well-formed or so
malformed as to be barely recognizable as an instance of
the format. In the extreme, the only information indicating
that the malicious sequence of bytes has anything to do
with a particular format may be extraneous or irrelevant
metadata like a file name extension. In any case, the attacker
intends to consume the file by a particular target pile of code
and logic so that the malicious bytes trigger the intended
effect. Hence, well-crafted, largely valid files may include or
contain an exploit that hardly perturbs the overall syntactic
structure of the host format.

To investigate this hypothesis, we built PolyDoc—a sys-
tem that interacts with the PolySwarm network to gather
files. PolySwarm employs various threat-detection engines

1. A counterexample is the 2005 windows WMF exploit [13], which used
an existing format feature to handle anticipated errors and malformations in
the graphics printer setup language to transfer control to an error-handling
function. Here, even a slight isolated malformation was enough to trigger
the unsafe control transfer to attacker-supplied code.

117

2023 IEEE Security and Privacy Workshops (SPW)

© 2023, Prashant Anantharaman. Under license to IEEE.
DOI 10.1109/SPW59333.2023.00017

20
23

 IE
EE

 S
ec

ur
ity

 a
nd

 P
riv

ac
y 

W
or

ks
ho

ps
 (S

PW
) |

 9
79

-8
-3

50
3-

12
36

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
SP

W
59

33
3.

20
23

.0
00

17

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



to investigate malware in various files. PolyDoc also deploys
a set of analyzers and tracers to investigate how various
PDF tools parse files and why they may fail. We then com-
pare the malformations detected by PDF tools and whether
PolySwarm found malware.

We found that today, malicious PDF files contain many
malformations — many more than benign files, which con-
tain a certain level of malformations considered benign —
a kind of background radiation. We also ran bpftrace with
our analyzers to demonstrate how benign and malicious files
are parsed differently and may contain different syntax. In
addition, different types of malware, such as viruses and
cryptominers, are also contained in malformed PDF files.

A plausible explanation for these findings is that most
code injection attacks or exploits require violation of syn-
tactic file properties (even though, and especially in a format
like PDF, any single or even a tiny tuple of syntactic mal-
forms are ignorable or recoverable). However, it could also
be the case that attacker toolkits have quite a lot in common
and do the bare minimum regarding syntactic validity to
place the exploit at the required place without attackers
caring about full theoretic syntactic validity. They may not
try to fully mask or transform the file to make it look as
benign as possible to structure or format-aware tracers and
scanners.

The truth is likely a blend based on the nature of the
kinds of threats one considers. For example, for specific
categories of attack or exploitation, exploiting an underlying
code vulnerability may require significant malformation in a
set of bytes that purports to be a specific file of a particular
format. On the other hand, it could also be that only a
minimal amount of malformation is strictly required by
the exploit, but the attackers do not bother to fix up the
overall appearance. Furthermore, certain attacks may have
little to do with syntactic malformation. Instead, they are
malicious because they contain malicious subformat (like
Javascript [25]) or are a known phishing payload that can
appear syntactically valid (and legitimate) except for where
the input collection is targeted or transferred.

In this work, we use a real-world data source of mali-
cious PDF files to assess the seemingly simple question: are
malicious files necessarily malformed? We investigate this
question by not just syntax-checking the input by employing
a set of PDF parsers but also the format-aware tracing of
parser logic. To that end, the contributions of this paper are
as follows.

• We present the first-of-its-kind study exploring a cor-
pus of known malicious files—comparing the output
of parsers with threat-detection engines (Section 4).
Over 60% of the files we collected from PolySwarm
have PolyScores greater than 0.8.

• We demonstrate that many malicious files con-
tain malformations that existing state-of-the-art PDF
tools can detect (Section 5). Files that are assigned
malware labels, such as Trojans and Crpytominers,
do contain syntactic malformations that are detected
by various PDF tools.

• Through our experiments, we identify the need to
improve the PDF Error Ontology (Section 6). The
ontology does not recognize many of the errors
PolyDoc encountered in the live hunt study.

2. Design Space Overview

Parsers are the first line of defense protecting the pro-
gram’s address space. Insufficient parsers have been the
cause of several exploits. Characterizing parser behavior is,
hence, vital to securing programs [35].

Tracers exist for general computer programs, and they
trace actions defined with respect to the ISA—the un-
derlying “language” or “virtual” machine model of com-
putation [17]. This information is extremely detailed and
valuable, but it is too low level, often quite invasive and
performance impactful, and has some other challenges (e.g.,
comparing information across runs or platforms). Neverthe-
less, it is therefore “easy” to trace sequences of events like
instructions, basic blocks, system calls, or functions [8]. This
is because developers usually want to debug the operation
of the program logic on the actual hardware or within the
runtime environment concerning those rules.

But parsers contain their own virtual machine: the in-
terpreter for the language format whose symbols they may
be consuming. We thus want to build a tracer for that inter-
preter. We think of this as implementing a “gdb(1) for format
F”, where only the parser logic within the larger program
is instrumented and can be examined, single-stepped, etc.
Instrumenting “just” the parser logic is not straightforward
because few parsers are cleanly separated from the corre-
sponding processing logic (e.g., to render a PDF or support
editing of a DOCX) [7]. Some parsing logic represents a
mixture of the primary container format and one or more
subformats. Parsers often include a writer or transducer,
often working alongside the “reading/data ingest” logic of
the parser to manipulate a shared data object representing
the AST or DOM of the data.

A motivating goal (but by no means the only goal) is
to produce a “byte accounting” in the form of a “story of
a byte’s journey” from a position in an input file to the
“final resting places” in the process memory right before it
is read or written by arbitrary processing code [20], [49].
This working goal explicitly acknowledges that the story
of that byte may seem to begin at only a single position,
but this is not really true: because the byte can exist with
respect to multiple abstract “address spaces,” i.e., relative to
many constructs at different layers of abstraction, we need to
begin our efforts by building in support for tracking the byte
relative to each of these starting and intermediate address
spaces. As a simple example, a byte of content in a PDF file
may start by existing in at least three namespaces (which are
not at all aliases): (1) the OS level meaning of the zero-offset
byte in the OS file, (2) the offset relative to the start of the
PDF File, as File is meant in the PDF-2.0 specification and
(3) an offset relative to a specific instance of a PDF format
feature (i.e., some object in the PDF DOM or structured
context itself).

118

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



Several tools available today may aid in flexibly observ-
ing parser behavior. On one end, typical Unix tools consider
the content as only a flat byte stream, e.g., grep and xxd.
Conversely, we “detonate” the file in a heavily dynamically
instrumented VM to conduct malware analysis [4], [18],
[51]. In this case, the focus is on the malware, not the
envelope or delivery mechanism.

Control flow tracing tools operate at several different
layers of abstraction; some only library level, others only
syscall level, and some others at the machine level provide
reads and writes and get very fine-grained authoritative
information [8], [17], [20], [29]. All these tracers produce
too much information at too high a performance cost, so
we need to filter, compress, and discard information and
then boil it down to coarse summaries. Several tools also
require access to source code. PolyTracker [49] addresses
this problem to a large extent. It produces a mapping of
input and their corresponding memory locations, allowing
us to track parser behavior more carefully.

These varied approaches have different memory and
time costs and often require extensive human input and
intervention for meaningful results. Hence, as a tradeoff, we
use bpftrace to trace parser behavior in this work [47]. This
presents the optimal point in the design space where we can
monitor control flow, system calls, memory, and error mes-
sages without additional instrumentation and intervention.

There are several reasons to consider bpftrace as the
optimal tracer for our use cases.

1) It traces the program at multiple layers of abstrac-
tion: kernel, syscall, library, and application.

2) It provides “optimal” performance for a software
system: executes in kernel space, not incurring any
emulation or simulation costs, or unneeded traps to
and from more privileged layers (e.g., as is done in
traditional VM-based introspection techniques)

3) It takes advantage of an existing flexible read/write
scriptable supervision framework.

A parser tracing framework must aim to understand how
a parser does what it does; this can be represented at varying
degrees of granularity, from simple accept/reject to general
error messages to instruction–level traces of application
execution.

3. Related Work

This work builds on work done by several other re-
searchers. This section draws on some past work to dis-
tinguish and motivate PolyDoc.

Polyglot files. There is a large body of work dealing
with detecting Polyglot files—files that may be interpreted
into more than one filetype [24]. Ange Albertini developed
several tools to demonstrate how to create such Polyglot
files.2

Trail of Bits has authored PolyFile [48] and
PolyTracker [19], [49]. PolyFile is a tool to find Polyglot

2. https://github.com/corkami/mitra

files, whereas PolyTracker tracks which bytes of input are
operated on by which functions in the code by adding an
LLVM pass to instrument the programs. Our paper uses the
name PolyDoc because it relies on the PolySwarm network
to capture malicious files and gather malformation labels
and not because it has any relation to any of these other
projects.

Strengthening the PDF Specification. The PDF spec-
ification has already gone through several iterations [22].
In 2021, Wyatt et al. proposed building the Arlington
PDF Model [52], a machine-readable version of the PDF
specification. Subsequently, PDF products have adopted the
Arlington model to ensure better compliance [36]. In 2022,
Tullsen et al. [50] studied the trust chain of PDFs and
how the process of building the PDF DOM can be better
formalized.

In this paper, PolyDoc does not implement portions of
the PDF specification. Instead, it relies on existing PDF
tools, such as Mutool, Caradoc, and Poppler, to enforce the
PDF specification and report any errors.

PDF Malware Detection and Mitigation. Contain-
ment and blocking malicious files and bad input have
been common themes in security research for the past few
decades. Vigilante detects fast-spreading worms by receiving
self-certifying alerts and adding corresponding filters [12].
Bouncer adds filters based on static and dynamic analysis
to generalize filters that are harder to bypass [11]. On
these lines, there has also been a body of work focused
on detecting malicious PDF files using machine-learning
approaches.

Blonce et al. [5] present a security analysis of the
PDF format in their Blackhat Europe talk. They discuss
how phishing attacks and privilege escalation attacks can
be triggered by using valid PDF files. Raynal et al. [39]
present a survey of how exploits targeting Adobe Reader
are constructed. Ange Albertini also shows how we can
construct polyglot files to confuse various file readers [2].

Laskov et al. [25] extract JavaScript code in PDF files
and statically analyze them. Smutz et al. [43] use a Random
Forests classifier on features extracted based on document
metadata and overall structure to identify malicious PDFs.
Maiorca et al. [32] also use a feature extractor that leverages
the overall syntactic structure of PDF files and uses it
to build an accurate classifier that detects malicious files.
Barnum applies deep learning to hardware execution traces
to detect control-flow anomalies in PDF and Word document
execution [54].

Balzarotti et al. [4] run files in heavily instrumented
and uninstrumented tools to compare their performance.
They found that malware engineers these days design tools
to evade detection. Running such a comparison of the
memory performance would reveal “split personalities.”

Parser Tracing. In the last two decades, we have seen
a massive improvement in binary instrumentation and dy-
namic analysis tools. In 1999, Hunt et al. [21] built Detours,

119

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



a tool to debug and profile arbitrary Win32 functions on
x86 machines. They presented a novel design using tram-
polines to preserve the uninstrumented binaries as subrou-
tines. Dtrace [8] allowed pausing processes, and analyzing
system calls and kernel data structures in runtime in Solaris.
Pin [29] and DynamoRIO [16] instrument binaries and
observe an application’s behavior by counting basic blocks
and monitoring registers, instructions, IO operations, and
memory accesses.

Lin et al. [27] built REWARDS, a system to reverse
engineer data structures using dynamic analysis. They tag
each memory location with a timestamped type attribute and
propagate types across memory locations and timestamps to
reverse engineer the entire structure. MACE applies various
state-reduction algorithms to concolic execution to improve
state exploration [10].

Henderson et al. [20] present an approach to virtual
machine introspection based on instruction-level tainting.
Their binary analysis system is built on top of QEMU.
Avatar2 [37] is a multi-target orchestration framework that
supports different binary analysis frameworks, operating
systems, debuggers, and physical devices—supporting in-
ternal state transfers.

PLATPAL [53] is the closest in terms of design and
goals to PolyDoc. To build PLATPAL, Xu et al. use OS-
level semantics such as heap management, system libraries,
syscalls, and memory layouts to differentiate between exe-
cution on different operating systems. Suspicious files are
submitted to multiple virtual machines running different
operating systems. PLATPAL then logs divergent behavior
between the two traces as malicious. PolyDoc takes a sim-
ilar approach by relying on various PDF tools rather than
instrumenting the same tool in different operating systems.
We will investigate merging the two approaches in future
work.

4. System Overview

In this paper, we aim to identify if there is a co-
occurrences between malware identified by threat-detection
engines and common PDF tools. To that end, we built the
PolyDoc, a system comprising several components.

4.1. PolyDoc Architecture

Figure 1 shows the architecture of the PolyDoc system.
The PolyDoc system comprises the components we built:
Orchestrator, Analyzers, and Storage Services. In addition,
it also uses the following off-the-shelf software: PolySwarm
network, Celery Task Manager, PostgreSQL database, and
Grafana Dashboard.

Orchestrator. The orchestrator provides a REPL (Read,
Evaluate, Print, and Loop) prompt. This REPL allows users
to submit files to the PolySwarm network and start analyzer
tasks on these files. The orchestrator also allows us to
check the results of analyzer tasks by supporting queries.

Storage. Our storage system downloads and caches
PDF files from the PolySwarm network. We store local
copies of PDF files to analyze them further. We store file
metadata, such as SHA256 hash, last read time, and file
size, in our PostgreSQL database for future lookups.

Analyzers. Our analyzers run various PDF tools and
bpftrace on PDF files. The analyzers store outputs of the
parsers and bpftrace in our database. We must ensure that
these analyzers run with strong isolation tools since they run
PDF tools on arbitrary PDF files—especially malicious ones
from PolySwarm. PolyDoc uses nsjail for strong isolation.
Table 1 shows the PDF tools we instrument and the exact
commands we execute.

Caradoc. Endignoux et al. [14] presented a restricted
PDF specification to reduce parsing ambiguity. They im-
plemented this restricted implementation and released it as
an open-source tool. They implemented an LR(1) grammar
to define the structural syntax of a PDF file. They built
an additional type checker to impose stricter rules on the
PDF objects. Despite a normalization step to relax the
checks the parser imposes, Caradoc is still too strict in
its validation in comparison to other PDF tools. Caradoc
only supports one stream compression filter and validates
the graph constructed with indirect references.

PDF Tools. The VIPER verification framework provides
verification tools for various programming languages, in-
cluding Java, Python, and Rust. The PDF parser produced
by Didier Stevens is a part of the VIPER framework and
allows users to parse PDF and displays the data of various
PDF objects present [45]. The tool can generate statistics
and list the type of objects in a PDF file. The tool was
primarily created to help with understanding PDF malware.

4.2. PolySwarm

PolySwarm is a malware intelligence platform that
crowdsources malware classification by running files
through several popular threat-detection engines and experts
(a total of 49 engines listed online3). Although several popu-
lar engines may detect common attack patterns, PolySwarm
also uses targeted and unique threat engines that may detect
unknown or zero-day threats.

The PolySwarm API also returns a PolyScore value—
rating the probability that a given file contains malware.
They use a proprietary threat scoring system assigning
weights to various engines they consider. The PolyScore
values range from 0.20 to 1.4

The API also provides PolyUnite labels—specifying var-
ious malware classes found by the threat engines. Table 4
lists some possible labels provided by PolySwarm.

3. https://polyswarm.network/engines
4. Given that their scoring system is proprietary, we are unable to

investigate why these values start from 0.2 in practice, and not 0.

120

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



Orchestration
REPL

Analyzer
Service

Storage

Grafana
Dashboard

Rabbit
Queue

PostgreSQL
Database

Polyswarm
Network

Analyzer
workers

Analyzer 1 2 .. N

Translator 1 2 .. N

(scales horizontally)

Store resultsRead

analyzer results

artifact file hashes

Query

Download and cache

Download

Trigger workers

Figure 1: Polydoc Architecture showing various analyzers, translators, and the Grafana UI where the user sees the visualized
results.

Table 1: PDF tools we trace as part of our study

Tool Version Command
Caradoca 0.3 caradoc extract --verbose --decode-streams --relax-streams {file}
Mutoolb 1.18.0 mutool clean -s -d -i -f {file}
Popplerc 0.84.0 pdfinfo -box -meta -js -struct -struct-text -isodates -dests {file}
Pdftoolsd 0.7.4 pdf-parser.py -v -O {file}

a. https://github.com/caradoc-org/caradoc/
b. https://github.com/ArtifexSoftware/mupdf
c. https://gitlab.freedesktop.org/poppler/poppler
d. https://didierstevens.com/files/software/pdf-parser V0 7 4.zip

4.3. Implementation

Most of PolyDoc is implemented in Python. The Orches-
trator REPL provides a command-line interface to interact
with the other components of PolyDoc and to submit files
and query the PolySwarm network. All the PDF tools we
instrumented in PolyDoc run in their Docker containers.
Using Docker containers for these analyzers allows us to
upgrade parser versions easily without dealing with depen-
dency issues.

Additionally, we manage analyzer tasks using Celery and
RabbitMQ.56 Celery allows us to queue and track tasks to
completion, so we can extract results and store them in our
PostgreSQL database once the tasks are complete.

We used Grafana dashboards to track the progress of
the analyzer tasks and check how many PDF files had been
processed so far. The parser tracing logs, error messages,

5. https://docs.celeryq.dev/en/stable/
6. https://www.rabbitmq.com/

and output are stored in the PostgreSQL database—available
to be queried for more in-depth analysis.

4.3.1. nsjail. Downloading and running analyzers on
malicious files has risks [26]. Hence, we used nsjail with
bpftrace to analyze files [40], [46]. The command we used
is as follows:

bpftrace -f json -c nsjail --config
nsjail.cfg -- {command}

The above command formats the output as JSON and
tracks the raw system calls and other kernel events. Nsjail
allows us to constrain a shell by applying Linux namespaces,
resource limits, and system call filters. We created nsjail
and bpftrace configuration files to use with our scripts to
standardize executions.

121

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



4.4. Heatmaps

Heatmaps are an output rendering of the Error Ontol-
ogy [42] and the PDF tools we consider in this study.
Figure 2 shows renderings of heatmaps. We produce two
normalizations of these heatmaps.

First, we normalize by the error class. The error classes
are listed along the X-axis. The frequency of files across
different PolyScores for a single error class must add up to
one in this normalization mode. This mode allows us to see
if, for a specific error class, the majority of the files skew
toward higher PolyScores.

Next, we normalize data by the PolyScores. Within a
window of PolyScores, the frequencies must add up to 1.
This mode allows us to see which error classes tend to have
a higher percentage of files than others.

Heatmaps are an effective way to visualize data emitted
by parser tracers and the PolySwarm network. In Section 5,
we show heatmaps we generated by running a baseline
(GovDocs) and a live hunt (gathering PDFs recently sub-
mitted to the PolySwarm network).

4.5. Error Ontology

The PDF Error Ontology [42] provides a set of regular
expressions for various tools, such as Mutool, Poppler,
Caradoc, PDF Parser, and PDFMiner. These regular expres-
sions represent known and commonly seen error conditions
in these PDF tools under investigation.

We chose to use the error ontology since it provides a
way for us to categorize these errors in a more structured
way. These error expressions were selected after studies
on GovDocs data to see which error messages occurred
frequently. We also used the error intake Python script
provided as part of the error ontology that classifies errors
into the above categories by taking a JSON error log as
input.

5. Findings

This section reports our findings. We ran two primary
experiments using the PolyDoc system: (1) on GovDocs data
and (2) on PolySwarm live data.

We use our experiments to answer the following ques-
tions.

• What PolyScores do we find on GovDocs files that
are known to be clean and well-formed?

• What malformation categories from the PDF Error
Ontology do we see in malicious files?

5.1. Metrics and Measurements

We define some terms here that we use extensively in
this section.

• Benign Files: Files that received a PolyScore closer
to 0.2.

• Malicious Files: Files that received a PolyScore
closer to 1.0.

• Well-formed Files: Files that produced no errors in
any of our four PDF tools.

• Malformed Files: Files that produce errors in one
or more of our PDF tools.

The benign or malicious status is provided by the
PolySwarm network for each file with a PolyScore value.
Our analyzers run our PDF tools on each PDF file in
consideration. Files that do not fail with any errors are added
a “no errors” tag to keep a record of any file that may be
well-formed.

5.2. Baseline Experiments

Files submitted to the PolySwarm network are skewed
towards malicious. Like VirusTotal,7 people suspicious of
some files they received would submit it to the PolySwarm
network. We ran a baseline control experiment using the
GovDocs dataset [15].

GovDocs is a dataset freely available containing 231106
PDF files. We selected 2068 files at random that were des-
ignated safe by the PDF Association and other participants
on the Safedocs program [6]. Figure 2 shows the results of
this baseline experiment.

In Figure 2a, we see that even though files produce
errors when run through various tools, they all received the
lowest possible PolyScore values—in the range of 0.20 to
0.24. However, normalizing using PolyScore values provides
more relevant information, as shown in Figure 2b. We see
that more than 80% of the files in our GovDocs sample run
without producing any errors in the PDF tools we consider.

Table 2 details these findings. Any non-zero number of
files creates an entry on the heatmap, despite the frequency
often remaining in single digits in such large corpora. Even
among the safe subset of GovDocs files, some files fail with
errors in Mutool and Poppler pdfinfo.

Table 2: Error frequencies when running GovDocs files on
PolyDoc

Error Message Number of PDF files
No errors 1880
mutool::File-level problems 120
poppler::File-level problems 58
mutool::Xref table 4
mutool::Syntax errors 3
mutool::Lexing problems 1
mutool::System problems 1
poppler::Lexing problems 1
Total Files 2068

5.3. Live Hunt View

We also ran the set of PDF tools on live data col-
lected from the PolySwarm network. Users can submit files
to PolySwarm by uploading them to the web interface.

7. https://virustotal.com

122

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
2:

H
ea

tm
ap

s
sh

ow
in

g
er

ro
r

cl
as

se
s

an
d

Po
ly

sc
or

es
fo

r
20

68
fil

es
fr

om
th

e
G

ov
D

oc
s

da
ta

se
t.

123

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
Po

ly
sc

or
e

(b
)

N
or

m
al

iz
ed

by
Po

ly
sc

or
e

Fi
gu

re
3:

H
ea

tm
ap

s
sh

ow
in

g
er

ro
r

cl
as

se
s

an
d

Po
ly

sc
or

es
fo

r
al

l
58

,9
06

fil
es

in
ou

r
liv

e
hu

nt
st

ud
y.

124

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: Results of running bpftrace with various PDF tools with files from PolySwarm. This table also shows how many
files were under each PolyScore range.

PolyScore Artifacts Average Buffer Average Gap Average Gap Average Event Average Read Average Requested
Count Count Size Count Count Read Length

0.2–0.3 10216 2.08 1.97 936195.41 58.79 53.38 304.62
0.3–0.4 14 1.5 1.5 82842.64 24.35 19.85 201.14
0.4–0.5 7142 1.73 2.08 190841.52 31.72 26.32 240.02
0.5–0.6 7 1.71 14.57 12211783.29 1145.71 1124.14 256.0
0.6–0.7 1905 1.74 1.73 171556.63 33.74 28.10 240.95
0.7–0.8 728 1.69 2.98 382571.20 59.54 54.29 244.86
0.8–0.9 5972 1.72 1.70 236602.52 30.60 24.85 247.37
0.9–1.0 32918 1.72 2.10 284527.70 67.19 61.48 247.65

PolySwarm then submits the file to individual threat engines
and waits for them to return with results and confidence
scores.

By using the PolySwarm API, we can then download
PDF files that were submitted recently and locally run these
files through our set of tracers. By creating a “live hunt”
mode for PolyDoc, over two days, we collected 58,906
unique PDF files.

Table 3 summarizes the results of our live hunt ex-
periments with bpftrace. We collected files across various
PolyScore ranges, but most of our files were in the malicious
range “0.9–1.0” and the benign range of “0.2–0.3.” We also
see that values, such as the number of gaps between offsets
and the sizes of these gaps vary drastically between different
PolyScore ranges.

Figure 3 shows a heatmap of our Live Hunt findings.
In Figure 3a, we see that except for the unrecognized error
category and the errors with Character Encodings, all other
Caradoc errors lean towards files with low PolyScores—
benign files. However, in Mutool and Poppler, except for
compression and internal system errors, most other errors
found co-occurred with malicious files. In Mutool and
Poppler, uncategorized errors tend to be in benign files,
whereas uncategorized errors produced by Caradoc skew
more toward malicious files.

5.3.1. Well-formed Files. In our entire PolySwarm dataset
of 58,906 files, we found only 22 files that produced no
errors in any of the PDF tools. Among these, 21 contained
low PolyScores and had no PolyUnite labels assigned to
them. One file had the “Trojan” and “Mass Mailer” labels
assigned to it. Hence, PolyDoc found that only one well-
formed PDF file in our dataset contained malware.

5.3.2. Xref table errors. Cross-reference tables or Xref
tables contain lookup indices for all the objects in the PDF
file. When a PDF file is updated, the previous Xref table
is often left in place, and a new Xref table is added to
append to the previous Xref table. As a result of several
updates, Xref tables often contain numerous errors. Most
modern PDF tools ignore the indices in the Xref tables and
reconstruct internal Xref tables by parsing the entire PDF
file. Hence, errors in Xref tables may be very frequent.

5.4. Malware Categories Found

PolySwarm provides a PolyScore and a set of PolyU-
nite labels for every file request submitted. Table 4 shows
all the malware categories found by PolySwarm using the
PolyUnite labels.8 Each of these categories of files produces
different trends in terms of malformations and malice. We
studied the top five malware categories in more depth.

• Trojan: Figure 5 compares the errors and PolyScore
values in detail. Figure 5a shows that some of
the Caradoc errors, such as Compression problems,
Encryption problems, and Xref table problems, are
associated more frequently with lower PolyScore
values. On the other hand, most other Poppler and
Mutool errors tend to co-occur more with malice.

• Mass Mailer: Figure 6 shows the errors encoun-
tered for the Mass Mailer malware category. We
see that most error conditions have a significant
spread across the PolyScores. However, the Poppler
lexing problems and Mutool compression problems
are exhibited in files with high PolyScores. The “no
errors” tag in Figure 6a indicates files that produced
no errors in any categories we consider. This cate-
gory contained only one file—and had the PolyUnite
labels of Trojan and Mass Mailer.

• Security Assessment Tool: Figure 7 shows the re-
sults of our experiment on files with the Security
Assessment Tool tag. These files are not necessarily
malware but may be attempts by exploit engineers to
perform reconnaissance. Most of the files with this
tag represented a PolyScore greater than 0.6. Since
the PolyScores are a probability measure, a number
of the threat engines under PolySwarm may not have
identified these files as threats.

• Virus: Figure 8 shows the results of our experiments
for the PolyUnite label Virus. Most of the files under
this label are clustered closer to the 1.0 end of the
PolyScore. Other than the unrecognized labels of
Caradoc and Mutool, files producing most of the
other errors end up with higher PolyScore values.

• Cryptominer: Figure 9 shows the results of our
study with the PolyUnite label Cryptominer. These
figures present an exciting overview of the files in

8. A file may be assigned multiple of these labels. Several files were
also uncategorized.

125

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



the PolySwarm network with this label. None of the
files resulted in “no errors,” and none resulted in
low PolyScores. All files fail with the same Caradoc
error of “Problems with character encoding.” Sim-
ilarly, Mutool often fails with lexing problems or
dictionary problems, and Poppler found file-level
problems and Xref table problems. Other than the
“File-level problems” error message being common
between Mutool and Poppler, none of the other error
categories reported by these PDF tools are common
across tools.
Upon a closer analysis of the Cryptominer files,
we found that all of these files contained the PDF
header but did not contain a trailer or Xref table.
Instead, these files contained an entire Windows
executable. Running the file command on these
files confirms that these files are PE32+ executables
built for Windows.

5.4.1. Emerging patterns. From Figures 5, 8, and 9 rep-
resenting the malware labels of trojans, viruses, and cryp-
tominers, we see that particular error messages in PDF tools
identify more with malware. With careful comparisons and a
deeper study of these files, we can build scanners and threat
engines that rely on PDF tools instead of known, prior-seen
patterns.

Table 4: Malware Labels provided by various threat engines
on PolySwarm. These are PolyUnite labels provided by
PolySwarm for each artifact.

Malware Category Count
Trojan 28807
Mass Mailer 25950
Security Assessment Tool 9046
Virus 337
Cryptominer 245
Downloader 79
Prepender 45
Exploit 43
Worm 37
Nonmalware 30
Backdoor 25
Greyware 16
Browser Modifier 15
Dropper 8
CVE 4
Keylogger 4
Password Stealer 4
Injector 3
Adware 2
Spyware 2
Clicker 1
Bot 1
Banker 1

6. Discussion

6.1. Follow-on Work: Format aware Tracing

As noted in Section 2, PolyDoc used bpftrace because
it was at the optimal point of the tradeoff in terms of the

performance hits, level of instrumentation, and information
reported. Tools such as PolyTracker [49] effectively corre-
late input locations with process memory. However, there is
a strong need for format-aware tracing tools.

Parser tracing tools cannot be one-size-fits-all. Each data
format or network protocol has its requirements and parsing
patterns. For example, in the PDF format, we scan the
header for the PDF version and then the trailer to find the
Xref table and the Catalog dictionary. However, network
protocols rarely support seek operations, but support length
fields, checksums, and numerous bitvectors.

Given that each format has its own set of features,
we need metrics for what is meaningful information for
a particular format. For example, “cavities” or “gaps” are
a vital metric for PDF files, but they may not translate to
other data formats such as JPEGs or network protocols since
they are not designed to have offsets and hence cannot have
cavities.

In future work, we will investigate building a database of
complex features that developers need to track to understand
the security posture of various data formats. We will then
build tracers that may apply to many of these features,
and support intricate, yet meaningful tracing of parsers for
different data formats.

6.2. Improving the PDF Error Ontology

PDF Tools

N
um

be
r o

f i
ns

ta
nc

es
 o

f e
rr

or
s

0

20000

40000

60000

Poppler Caradoc Pdftools Mutool No Errors

Known Errors Uncategorized Errors

Figure 4: Comparison of uncategorized and categorized
errors using the Error Ontology regular expressions

We ran the regular expressions provided with the PDF
error ontology on errors emitted by various PDF tools on live
hunt PDF files. We found that the uncategorized errors—
errors not identified with any regular expression—were high
in number. Figure 4 shows our findings.

Caradoc produces high numbers of errors in each file—
the graph shows instances of errors, not the number of files.
At the end of our live hunt, we saw that the number of un-
categorized Caradoc errors was higher than the categorized
errors. For Poppler pdfinfo, we found that close to 10% of
the errors were uncategorized. Similarly, around 35% of the
errors produced by Mutool were unaccounted for.

126

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



Caradoc follows the strictest set of rules among the
PDF tools we use in our study. Mutool and Poppler ignore
Xref table errors and reconstruct the Xref table—following
a more permissive approach to parsing the PDF file. Most
practical PDF tools focus on providing some output to the
user—failing only when every other option fails.

This finding demonstrates the need for more research
into the commonly seen error cases in real-world and mali-
cious datasets. In future work, we will also explore if some
of these unrecognized error cases are specific to malicious
files—cases that are not accounted for in clean datasets. We
also believe that techniques such as Pareto analysis may
be helpful to minimize the crucial set of errors we need to
consider to gain extensive coverage over the errors produced
by various PDF tools.

6.3. Building a format-aware lightweight scanner:
Identifying Malicious Files

At the beginning of this investigation, we set out with
a research question to understand how we can build simple
intrusion detection tools using insight from these format-
aware tools. The heatmaps we produce in this paper are
effective tools for visualizing co-occurrences between the
errors produced while parsing PDFs and malice. In addition,
we also see that bpftrace logs of malicious and benign files
deviate in specific behaviors, such as gaps between offsets
(also known as cavities in Polyglot files), and the number
of memory events, as seen in Table 3.

However, more research is needed to construct first-pass
filters for an IDS to detect malformed files early to conduct a
deeper analysis of potentially malicious files. We believe that
with more statistical analysis of bpftrace logs and comparing
parser errors with malicious behavior, such filters may be
feasible in future work.

6.4. Beating the system

Adversaries often use techniques to detect sandbox en-
vironments and instrumented operating systems to decide
whether to execute a payload [4], [28]. These evasive,
“environment-sensitive” approaches study the characteristics
of the environment and the configurations to decide whether
to execute. PolyDoc relies on PDF parsers that find structural
and syntactic issues in PDF files.

We run these PDF files inside Docker containers with
nsjail since our dataset contained malicious files. PolyDoc
is not executing code from PDF files, so the malware is
not meant to be executed. Our study aimed to identify if
malware writers use malformations in PDF files to inject
exploits. Implementing sandbox detection while crafting the
malicious PDFs may help evade some of the engines used
in the PolySwarm network. However, to evade the PolyDoc
system, attackers must use well-formed PDF files to execute
exploits on specific PDF viewers. Attackers must identify
countermeasures that make the PDF files syntactically well-
formed.

7. Conclusions

We find that in this first large-scale study of real-world
malicious PDF files, there is an association between the level
of malformations present in the PDF and whether a file is
drawn from the malicious set as compared to a validated
benign set. In particular, malicious PDF files seem to have
significantly more malformations than “normal” PDF files.

Further work can explore why this association is present.
We hypothesize that it may reflect either common attacker
tooling approaches (i.e., the bare minimum structure needed
to templatize a PDF file that holds a specific exploit code
or malicious payload) or be due to a minimum floor of
malformed complexity necessary to exploit particular vul-
nerabilities or logic weaknesses in extant PDF parsers. In
other words, a certain level of incorrect structure is required
to drive the target application code into a vulnerable state,
and such code is proportionally greater than the level of
malformation that extant parsers tolerate in normal benign
files.

Acknowledgments

We thank the anonymous reviewers for their time and
effort. Their suggestions immensely improved the quality
of the paper and the arguments we made. This material
is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR001119C0074. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA).

References

[1] Adobe Security Bulletin. Integer Overflow or Wraparound; Out-of-
bounds Read; Stack-based Buffer Overflow in Adobe Reader. https:
//helpx.adobe.com/security/products/acrobat/apsb23-01.html, 2023.

[2] Ange Albertini. Abusing file formats; or, corkami, the novella. PoC
or GTFO 0x07, 2015.

[3] Prashant Anantharaman. Protecting Systems from Exploits Using
Language-Theoretic Security. PhD thesis, Dartmouth College, 2022.

[4] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Efficient Detection of Split
Personalities in Malware. In NDSS, 2010.

[5] Alexandre Blonce, Eric Filiol, and Laurent Frayssignes. Portable
Document Format (PDF) Security Analysis and Malware Threats. In
Presentations of Europe BlackHat Conference. Citeseer, 2008.

[6] Sergey Bratus. SafeDocs: Restoring Trust in Electronic Documents.
https://www.darpa.mil/news-events/2018-08-09, 2018.

[7] Sergey Bratus, Meredith L Patterson, and Dan Hirsch. From shotgun
parsers to more secure stacks. Shmoocon, Nov, 2013.

[8] Bryan Cantrill, Michael W Shapiro, Adam H Leventhal, et al. Dy-
namic Instrumentation of Production Systems. In USENIX Annual
Technical Conference, General Track, pages 15–28, 2004.

[9] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar,
and Mu Zhang. Extract Me If You Can: Abusing PDF Parsers in
Malware Detectors. In NDSS, 2016.

127

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



[10] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhi-
jie Chen, Edward XueJun Wu, and Dawn Song. MACE: Model-
inference-Assisted Concolic Exploration for Protocol and Vulnera-
bility Discovery. In 20th USENIX Security Symposium (USENIX
Security 11), 2011.

[11] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and
Marcus Peinado. Bouncer: Securing Software by Blocking Bad
Input. SIGOPS Oper. Syst. Rev., 41(6) page 117–130, oct 2007. DOI
10.1145/1323293.1294274.

[12] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Lidong Zhou, Lintao Zhang, and Paul Barham. Vigilante: End-to-
End Containment of Internet Worms. SIGOPS Oper. Syst. Rev., 39(5)
page 133–147, oct 2005. DOI 10.1145/1095809.1095824.

[13] Alex Eckelberry. New exploit blows by fully
patched Windows XP systems. https://techtalk.gfi.com/
new-exploit-blows-by-fully-patched-windows-xp-systems/, 2005.

[14] Guillaume Endignoux, Olivier Levillain, and Jean-Yves Migeon.
Caradoc: A Pragmatic Approach to PDF Parsing and Validation. In
IEEE Security and Privacy Workshops (SPW), pages 126–139, 2016.
DOI 10.1109/SPW.2016.39.

[15] Simon Garfinkel. Govdocs1 — (nearly) 1 million freely-
redistributable files. https://digitalcorpora.org/corpora/files/, 2012.

[16] Timothy Garnett. Dynamic optimization if IA-32 applications under
DynamoRIO. PhD thesis, Massachusetts Institute of Technology,
2003.

[17] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding
Control Flows using Intel Processor Trace. ACM SIGPLAN Notices,
52(4) pages 585–598, 2017. DOI 10.1145/3093336.3037716.

[18] C Guarnieri, Mark Schloesser, J Bremer, and A Tanasi. Cuckoo
sandbox-open source automated malware analysis. Black Hat USA,
2013.

[19] Carson Harmon, Bradford Larsen, and Evan A Sultanik. Toward
Automated Grammar Extraction via Semantic Labeling of Parser
Implementations. In IEEE Security and Privacy Workshops (SPW),
pages 276–283. IEEE, 2020. DOI 10.1109/SPW50608.2020.00061.

[20] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. Make It Work, Make
It Right, Make It Fast: Building a Platform-Neutral Whole-System
Dynamic Binary Analysis Platform. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA
2014, page 248–258, New York, NY, USA, 2014. Association for
Computing Machinery. DOI 10.1145/2610384.2610407.

[21] Galen Hunt and Doug Brubacher. Detours: Binary Interception of
Win32 Functions. In 3rd USENIX Windows NT Symposium, 1999.

[22] ISO 32000-2:2020. Document management - Portable document
format - Part 2: PDF 2.0 2020.12, 2020.

[23] Suman Jana and Vitaly Shmatikov. Abusing File Processing in
Malware Detectors for Fun and Profit. In 2012 IEEE Symposium on
Security and Privacy, pages 80–94, 2012. DOI 10.1109/SP.2012.15.

[24] Luke Koch, Sean Oesch, Amul Chaulagain, Mary Adkisson, Saman-
tha Erwin, and Brian Weber. Toward the Detection of Polyglot
Files. In Proceedings of the 15th Workshop on Cyber Security
Experimentation and Test, pages 120–128, 2022.

[25] Pavel Laskov and Nedim Šrndić. Static Detection of Malicious
JavaScript-Bearing PDF Documents. In Proceedings of the 27th An-
nual Computer Security Applications Conference, ACSAC ’11, page
373–382, New York, NY, USA, 2011. Association for Computing
Machinery. DOI 10.1145/2076732.2076785.

[26] Samuel Laurén, Sampsa Rauti, and Ville Leppänen. A Survey on
Application Sandboxing Techniques. In Proceedings of the 18th
International Conference on Computer Systems and Technologies,
CompSysTech’17, page 141–148, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. DOI 10.1145/3134302.3134312.

[27] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic Reverse
Engineering of Data Structures from Binary Execution. In Proceed-
ings of the 11th Annual Information Security Symposium, pages 1–1,
2010.

[28] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.
Detecting environment-sensitive malware. In Recent Advances in In-
trusion Detection: 14th International Symposium, RAID 2011, Menlo
Park, CA, USA, September 20-21, 2011. Proceedings 14, pages 338–
357. Springer, 2011.

[29] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. SIGPLAN Not., 40(6) page 190–200,
jun 2005. DOI 10.1145/1064978.1065034.

[30] Davide Maiorca and Battista Biggio. Digital Investigation of PDF
Files: Unveiling Traces of Embedded Malware. IEEE Security & Pri-
vacy, 17(1) pages 63–71, 2019. DOI 10.1109/MSEC.2018.2875879.

[31] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at
the Bag is Not Enough to Find the Bomb: An Evasion of Struc-
tural Methods for Malicious PDF Files Detection. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security, ASIA CCS ’13, page 119–130, New
York, NY, USA, 2013. Association for Computing Machinery. DOI
10.1145/2484313.2484327.

[32] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A Pattern
Recognition System for Malicious PDF Files Detection. In Ma-
chine Learning and Data Mining in Pattern Recognition: 8th In-
ternational Conference, MLDM 2012, Berlin, Germany, July 13-
20, 2012. Proceedings 8, pages 510–524. Springer, 2012. DOI
10.1007/978-3-642-31537-4 40.

[33] Zhengyang Mao, Zhiyang Fang, Meijin Li, and Yang Fan. EvadeRL:
Evading PDF Malware Classifiers with Deep Reinforcement Learn-
ing. Security and Communication Networks, v.2022, 2022. DOI
10.1155/2022/7218800.

[34] Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus.
English Shellcode. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, page 524–533,
New York, NY, USA, 2009. Association for Computing Machinery.
DOI 10.1145/1653662.1653725.

[35] Ryan McDonald and Joakim Nivre. Characterizing the errors of data-
driven dependency parsers. Google Inc., 2007.

[36] Mike Bremford. BFO PDF Library 2.27.2. https://bfo.com/blog/2022/
12/05/bfo pdf library 2 27 2 introducing the arlington model/,
2022.

[37] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide
Balzarotti. Avatar2: A Multi-Target Orchestration Platform. In
Proceedings of the Workshop on Binary Analysis Research (BAR)
(Colocated NDSS Symposium), volume 18, pages 1–11, 2018.

[38] Nexor. Preventing document based malware from devastating
your business. https://www.nexor.com/resources/white-papers/
preventing-document-based-malware-from-devastating-your-business/,
2017.

[39] Frédéric Raynal, Guillaume Delugré, and Damien Aumaitre. Ma-
licious origami in PDF. Journal in computer virology, 6(4) pages
289–315, 2010.

[40] Alastair Robertson. bpftrace: High-level tracing language for Linux
eBPF. https://github.com/iovisor/bpftrace, 2019.

[41] Karthik Selvaraj and Nino Fred Gutierrez. The Rise of PDF Malware.
Symantec Security Response, 2010.

[42] Andrea Shepard. PDF Error Ontology trees for SAFEDOCS. https:
//gitlab.special-circumstanc.es/andrea/error-ontology, 2020.

[43] Charles Smutz and Angelos Stavrou. Malicious PDF Detection Using
Metadata and Structural Features. In Proceedings of the 28th An-
nual Computer Security Applications Conference, ACSAC ’12, page
239–248, New York, NY, USA, 2012. Association for Computing
Machinery. DOI 10.1145/2420950.2420987.

128

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



[44] Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D.
Keromytis, and Salvatore J. Stolfo. On the Infeasibility of Modeling
Polymorphic Shellcode. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07, page 541–551,
New York, NY, USA, 2007. Association for Computing Machinery.
DOI 10.1145/1315245.1315312.

[45] Didier Stevens. PDF Parser V 0.7.8. https://blog.didierstevens.com/
programs/pdf-tools/, 2023.

[46] Robert Swiecki. google/nsjail: A light-weight process isolation tool,
making use of Linux namespaces and seccomp-bpf syscall filters.
https://github.com/google/nsjail.

[47] Ludwig Thomeczek, Andreas Attenberger, Johannes Kolb, Vaclav
Matousek, and Juergen Mottok. Measuring Safety Critical Latency
Sources using Linux Kernel eBPF Tracing. In ARCS Workshop 2019;
32nd International Conference on Architecture of Computing Systems,
pages 1–8, 2019.

[48] Trail of Bits. PolyFile: A pure Python implementation of libmagic.
https://github.com/trailofbits/polyfile, 2020.

[49] Trail of Bits. PolyTracker: An LLVM-based instrumentation tool
for universal taint tracking, dataflow analysis, and tracking. https:
//github.com/trailofbits/polytracker, 2020.

[50] Mark Tullsen, William Harris, and Peter Wyatt. Strengthening Weak
Links in the PDF Trust Chain. In IEEE Security and Privacy Work-
shops (SPW), pages 152–167. IEEE, 2022. DOI 10.1109/SPW54247.
2022.9833889.

[51] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward Auto-
mated Dynamic Malware Analysis Using CWSandbox. IEEE Security
& Privacy, 5(2) pages 32–39, 2007. DOI 10.1109/MSP.2007.45.

[52] Peter Wyatt. Work in Progress: Demystifying PDF Through a
Machine-Readable Definition. IEEE Security and Privacy Workshops
(SPW), 2021.

[53] Meng Xu and Taesoo Kim. PLATPAL: Detecting Malicious Docu-
ments with Platform Diversity. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC’17, page 271–287, USA,
2017. USENIX Association.

[54] Carter Yagemann, Salmin Sultana, Li Chen, and Wenke Lee. Bar-
num: Detecting Document Malware via Control Flow Anomalies
in Hardware Traces. In Information Security: 22nd International
Conference, ISC 2019, New York City, NY, USA, September 16–
18, 2019, Proceedings 22, pages 341–359. Springer, 2019. DOI
10.1007/978-3-030-30215-3 17.

129

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
5:

H
ea

tm
ap

s
sh

ow
in

g
fil

es
la

be
le

d
“T

ro
ja

n”
by

Po
ly

sw
ar

m
.

130

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
6:

H
ea

tm
ap

s
sh

ow
in

g
fil

es
la

be
le

d
“M

as
s

M
ai

le
r”

by
Po

ly
sw

ar
m

.

131

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
7:

H
ea

tm
ap

s
sh

ow
in

g
fil

es
la

be
le

d
“S

ec
ur

ity
A

na
ly

si
s

To
ol

”
by

Po
ly

sw
ar

m
.

132

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
8:

H
ea

tm
ap

s
sh

ow
in

g
fil

es
la

be
le

d
“V

ir
us

”
by

Po
ly

sw
ar

m
.

133

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 



(a
)

N
or

m
al

iz
ed

by
er

ro
r

cl
as

s
(b

)
N

or
m

al
iz

ed
by

Po
ly

sc
or

e

Fi
gu

re
9:

H
ea

tm
ap

s
sh

ow
in

g
fil

es
la

be
le

d
“C

ry
pt

om
in

er
”

by
Po

ly
sw

ar
m

.

134

Authorized licensed use limited to: Dartmouth College Library. Downloaded on June 17,2024 at 14:35:18 UTC from IEEE Xplore.  Restrictions apply. 


